Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия | страница 32
— «угловые размеры» Солнца и Луны, нанесенные в масштабе. Измерения показывают, что Солнце и Луна видны с Земли поя углом 1/3°. Тригонометрические таблицы дают соотношение 1:110 для основания и высоты.
Теперь мы знаем, что для Луны база в 1000 миль дает угол всего >1/>4°. Для Солнца этот угол равен >1/>1600° и его очень трудно измерить даже сейчас, когда наблюдатели располагают большими возможностями.
Размеры Солнца (или Луны) можно просто связать с расстоянием до нас, измеряя угловой диаметр. Держите монету в вытянутой руке, то придвигая ее ближе к глазам, то отодвигая дальше, пока она не закроет солнечный диск. Измерив диаметр монеты и расстояние ее от глаза и определив отношение этих размеров, можно получить отношение диаметра Солнца к расстоянию Солнца от Земли. Это отношение равно примерно >1/>110. С помощью прибора можно измерить угол, под которым диаметр Солнца виден с Земли; этот угол почти точно равен >1/>2°. Нарисуйте на большом листе бумаги треугольник, угол при вершине которого равен >1/>2° и измерьте длину его сторон. Или же воспользуйтесь простыми тригонометрическими соотношениями. Вы найдете, что расстояние от основания треугольника до его вершины приблизительно в 110 раз больше основания. Отсюда следует, что расстояние от Солнца до нас в 110 раз больше его диаметра. Почти то же соотношение справедливо и для Луны — Луна и Солнце кажутся приблизительно равными по величине, что подтверждается полными затмениями Солнца, когда Луна точно закрывает его. Измеряя одну из этих величин — диаметр или расстояние — и пользуясь коэффициентом 110, можно определить другую величину. Обычно измеряют расстояние, оценивая его на глаз.
Фиг. 36.Оценка расстояний.
>а — по углу между лучами зрения; б — на основании тoго, что расстояние до Луны, определенное по углу между лучами зрения, позволило бы наблюдателю, находящемуся на расстоянии 1000 миль, заметить разницу в >1/4°.
Размеры Земли
В первую очередь надо было определить размеры самой Земли, затем выразить другие величины через земной радиус.
Эратосфен (~ 235 г. до н. э.) произвел первые измерения размеров Земли. Он сравнил направление вертикали, проведенной к данному участку поверхности земного шара, с направлением параллельного пучка солнечных лучей в двух пунктах, отстоящих друг от друга на известном расстоянии. Он предположил, что Солнце находится настолько далеко, что все солнечные лучи, достигающие Земли в данный момент, практически параллельны.