Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия | страница 31
Эта простая схема не имела успеха: она противоречила традициям и была лишь идеей, не подкрепленной измерениями, как это сделал много позже Коперник. Возможность движения Земли по орбите вызывала возражения с точки зрения тогдашних представлений о механике, которые впоследствии оказались даже еще более серьезными; кроме того, эта идея немедленно привела к другого рода затруднениям с точки зрения астрономов. Если Земля движется по орбите, имеющей большую протяженность, то в течение года у созвездий должны наблюдаться параллаксы. Между тем таких параллаксов не наблюдалось, и Аристарх мог объяснить этот факт только тем, что звезды удалены от Земли на расстояния, бесконечно большие по сравнению с диаметром земной орбиты.
Таким образом, он не только «поместил» звезды гораздо дальше, чем предполагалось ранее, но и освободил их от необходимости находиться всем на одной большой сфере. Поскольку звезды находятся так далеко, они могут быть рассеяны в пространстве и находиться в покое, в то время как Земля будет вращаться.
Фиг. 34.Схема Аристарха.
>а — система сфер; б — схема на которой показаны орбиты планет. Показаны две планеты: P1 — может быть Марсом, Юпитером или Сатурном, Р2 — Меркурием или Венерой.
Измерения размеров и расстояний
Астрономы стали пытаться определить действительные размеры Солнца, Луны и Земли и их взаимные расстояния. Ранее существовали лишь смутные догадки: некоторые считали, что Солнце и Луна находятся очень далеко, — другие же — что они находятся непосредственно за облаками; считали, что Солнце имеет такие же размеры, как Греция, а Луна меньше…. Надежные измерения могли бы превратить астрономию в значительно более реальную науку, но их было трудно осуществить.
Человек обычно определяет расстояние на глаз, оценивая угол между лучами зрения, когда оба глаза направлены на предмет. Наши глаза расположены слишком близко друг к другу, и с их помощью нельзя определять расстояния до предметов, удаленных на большие расстояния. Поэтому мы пользуемся для этой цели более длинной базой и измеренными углами. Затем мы, соблюдая масштаб, строим диаграмму или используем тригонометрию.
Фиг. 35.Соотношение между размерами удаленного предмета и расстояние до него.
>Соотношение можно найти, держа монету известных размеров на измеренном расстоянии так, чтобы она закрывала предмет, с помощью этого метода нельзя определить абсолютные размеры или расстояния.
>а — схема дана не в масштабе;