Вычислительное мышление: Метод решения сложных задач | страница 45
Графы часто используются, чтобы представить информацию о связях между объектами. Это маршруты на автобусных остановках, карты поездов и метро. Граф — очень хорошее в ситуации, когда нужно проложить маршрут из одного места в другое, как в нашем случае. Упрощенный граф облегчает составление маршрута по сравнению с максимально точной картой, где трудно выделить нужную информацию среди многочисленных подробностей.
В информатике есть особое название для обхода графа, когда вы посещаете каждую вершину ровно один раз и возвращаетесь в начало. Это называется — по имени ирландского физика Уильяма Роуэна Гамильтона. Он изобрел головоломку, по условиям которой нужно было обойти все углы додекаэдра, проходя по его граням.
Одно решение на двоих
Возможно, вы уже заметили, что головоломка «Ход конем» и задача экскурсовода очень похожи друг на друга. Если вы записали требования для «Хода конем», то, вероятно, увидели полное совпадение.
1. Тур начинается в заданной точке.
2. Необходимо посетить все точки.
3. Нельзя проходить уже посещенную точку.
4. Необходимо закончить в начальной точке.
В обоих задачах вас просят найти гамильтонов цикл! Таким образом, мы использовали прием из вычислительного мышления. Мы обе задачи, чтобы они стали одинаковыми, и сделали это с помощью увидев важнейшие сходные черты. При этом мы от деталей, таких как отели и туристические достопримечательности или необходимость ходить конем или ехать по линиям метро.
Итак, задача экскурсовода оказалась легкой, потому что мы представили ее в виде графа. Так почему бы нам не сделать то же самое и с задачей «Ход конем»?
Для этого нужно в большей степени. Чтобы это сделать, необходимо осознать две вещи. Во-первых, не важно, как выглядит доска. Не важно, что поля — это квадраты. Их форма и размер могли бы быть абсолютно любыми. Давайте нарисуем каждое поле в виде кружочка — так же, как достопримечательности изображены на карте метро. Это просто вершины графа.
Во-вторых, какие поля на самом деле находятся рядом друг с другом — тоже не очень важно. Единственное, что имеет значение, — между какими полями конь перемещается. Поэтому давайте соединим линиями любые два кружка, между которыми можно сделать ход. Подобным образом карта метро показывает, между какими достопримечательностями можно переместиться на метро. Это ребра графа.