Хулиномика. Хулиганская экономика. Финансовые рынки для тех, кто их в гробу видал | страница 83
В эпоху Возрождения были кое-какие страховые контракты. Но если перевести тогдашний страховой полис на современный язык, очень трудно понять, что там имелось в виду. То есть до концепции они вроде как и догадались, но сформулировать её по-человечески так и не смогли. Поэтому индустрии и не возникло. А появление теории вероятности как раз и позволило её создать.
Некоторые соотносят появление страхования со знаменитым лондонским пожаром 1666 года. Весь город тогда сгорел к ебеням, и после этого люди начали покупать страховку. Но для развития страховой индустрии этот пример необычен — ведь если сгорит весь город, страховые конторы просто обанкротятся. Бизнес строится на независимых вероятностях и на сборе рисков в кучу. Но в любом случае, это было каким-никаким стартом.
Надо признать, что у страхования было трудное детство — как раз потому, что люди плоховато понимали концепцию вероятности. В голове им трудно было это удержать, как и вам сейчас. Тут много аспектов.
ЧТОБЫ ПОНЯТЬ, КАК РАБОТАЕТ ВЕРОЯТНОСТЬ, НАДО СНАЧАЛА ПОНЯТЬ, ЧТО ТАКОЕ СЛУЧАЙНОЕ СОБЫТИЕ, А ИНТУИТИВНО ЭТО НЕПОНЯТНО.
Многие люди думают, что они могут влиять на случайность каким-то образом. У меня есть товарищ, который думает, что чаще других выбрасывает шестёрки на кубиках. Если с таким подходом браться за освоение теорвера, будет беда.
9.3
История становления
Первые задачи вероятностного характера возникли в азартных играх — в кости, в карты, в расшибалочку. Французский священник 13-го века Ришар де Фурниваль подсчитал все возможные суммы очков после броска трёх костей — кому как не священнику играть в кости — и указал число способов, которыми может получиться каждая из этих сумм. Это число можно рассматривать как первую вычислимую меру ожидаемости события — по-нашему, как раз вероятности. До Фурниваля, да и после него тоже, эту меру часто подсчитывали неверно, указывая, например, что суммы в 3 и 4 очка равновероятны. Ведь оба могут получиться как бы «только одним способом»: по результатам броска «три единицы» и «двойка с двумя единицами» соответственно. Де Фурниваль не догонял, что хотя три единицы и в самом деле получаются только одним способом: 1+1+1, двойку с двумя единицами можно выкинуть целыми тремя способами: 1+1+2, 1+2+1 и 2+1+1, так что эти события вовсе не равновероятны. Сумма в четыре очка выпадает в три раза чаще, хотя это тоже случается редко, в среднем лишь каждый 72-й бросок. Аналогичные ошибки неоднократно встречались и в дальнейшей истории.