Вначале была аксиома. Гильберт. Основания математики | страница 5



1928 В соавторстве с Вильгельмом Аккерманом публикует «Основы теоретической логики», первый учебник по математической логике в ее современном понимании.

1930 Уходит в отставку. Читает оптимистичную лекцию по случаю получения звания почетного гражданина Кёнигсберга, завершая ее лозунгом: «Мы должны знать. Мы будем знать». Курт Гёдель накладывает ограничения на формализм Гильберта на конгрессе, проходящем в то же время.

1934 В соавторстве с Паулем Бернайсом публикует первый том «Оснований математики», в который включены некоторые достижения в этой области.

1943 Умирает в Гёттингене (Германия) в то время, как своим жестоким чередом идет Вторая мировая война.


ГЛАВА 1

Основания геометрии

Карьера Гильберта пошла вверх, когда он решил хитрую проблему Гордана. Однако молодой ученый отложил алгебру и теорию чисел, чтобы полностью погрузиться в изучение оснований геометрии. Открытие неевклидовых геометрий стало шахом почти 2000-летней греческой геометрии. Переформулирование аксиоматического метода позволило Гильберту навести порядок в этой области и подчеркнуть, что нет единой справедливой геометрии: их много, и каждая обладает различным набором аксиом.

Кёнигсберг, 1862 год. Прошло 58 лет после смерти Иммануила Канта и 120 с тех пор, как Леонард Эйлер (1707-1783) решил знаменитую проблему семи мостов. Давид Гильберт появился на свет 23 января в протестантской семье из среднего класса, которая вот уже два поколения жила в столице Восточной Пруссии. Пруссия в то время возглавила объединение Германии под руководством кайзера Вильгельма I и железного канцлера Отто фон Бисмарка. Отец будущего ученого был городским судьей и прививал сыну типичные прусские ценности: пунктуальность, дисциплину и чувство долга. Мать, наоборот, увлекалась философией, астрономией и, как рассказывают, простыми числами.

В школьные годы Гильберт показал себя упорной, энергичной и решительной личностью, хотя в средней школе страдал от того, что учебный процесс выстраивался на заучивании. Он увлекался искусством, литературой и математикой, однако не считался вундеркиндом. В 1880 году он выдержал экзамен и был зачислен в университет, избрав математику, хотя родители хотели, чтобы он изучал право.

Кёнигсберг — конечно, не Берлин, где развернули свою деятельность преподаватели уровня Карла Вейерштрасса (1815- 1897) и Леопольда Кронекера (1823-1891), но и здесь имелась прочная математическая традиция. Здесь когда-то работал Карл Якоби (1804-1851), считавшийся вторым после Гаусса немецким математиком. Так в каком же научном контексте получал образование Гильберт? В последней четверти XIX века предполагалось, что как дисциплина математика имеет три ответвления: анализ, алгебру и геометрию. Анализ — это исследование все более строгого использования бесконечно малых, решение дифференциальных уравнений и теория функций в целом. Алгебра постепенно перестала походить на предмет, который мы изучали в школе, и занималась уже абстрактными объектами, хотя и не исключала теорию чисел. Геометрия же включала в себя целое семейство плохо согласованных между собой составляющих: евклидову геометрию и неевклидовы геометрии (в том числе проективную), а также дифференциальную и алгебраическую геометрии, в которых использовались инструменты анализа и алгебры.