Шанс есть! Наука удачи, случайности и вероятности | страница 71
Бросание монетки и игральной кости в основе своей детерминированы. То же самое касается и системы, состоящей из огромного количества маленьких круглых сфер. В этом космическом бильярде каждый шар подчиняется законам механики. Если известны исходное положение и скорость каждой сферы, последующее движение будет полностью предопределено. Но Больцман и не пытался следить за точным маршрутом каждой сферы. Он сделал допущение, что позиции и скорости сфер носят «статистический» характер, без какой-то склонности к движению в том или ином определенном направлении. Так, давление – это мера усредненной силы, которая возникает, когда шарики отскакивают от внутренней поверхности стенок сосуда, где они находятся, если предположить, что каждая сфера с одинаковой вероятностью двигается в любом направлении.
Статистическая механика описывает движение большого количества сфер статистическими величинами – такими как «среднее». Иными словами, она использует случайную модель на микроуровне, чтобы объяснить детерминированную модель на макроуровне. Корректен ли такой подход?
Да, хотя Больцман этого тогда и не знал. По сути, он сделал два допущения: движение сфер хаотично и хаос этот особого рода – порождающий «среднее состояние», которому можно дать четкое определение. Из этих идей впоследствии вырос целый раздел математики – эргодическая теория. В ходе развития математики гипотеза Больцмана превратилась в широко известную теорему.
Таким образом, произошел удивительный сдвиг точки зрения. Детерминированная модель (газовые законы) усовершенствовали до случайной (с крошечными сферами), а затем эту случайность математически обосновали как следствие детерминированной динамики.
И все-таки носит ли поведение газов случайный характер? Всё зависит опять-таки от точки зрения. Одни аспекты их поведения лучше описываются статистически, другие – детерминировано. Общего ответа нет, все зависит от контекста. И эта ситуация вовсе не является такой уж необычной. При решении некоторых задач (например, при расчетах характеристик воздушных потоков вокруг космического челнока) жидкость или газ можно рассматривать как единое целое, как некий континуум, подчиняющийся определенным законам. В других ситуациях, например при изучении броуновского движения (беспорядочного перемещения частиц взвеси, вызванного столкновениями с атомами), следует принимать в расчет атомарную природу жидкости или газа, и здесь годится больцмановская модель в каком-то из ее современных вариантов.