Шанс есть! Наука удачи, случайности и вероятности | страница 70



С броском монетки что-то похожее: достаточно серьезная ошибка при измерении начальной линейной скорости и начальной быстроты вращения лишит нас возможности заранее узнать результат броска. Но монетка не является «истинно хаотической», поскольку, пока она вращается в воздухе, ошибка растет относительно медленно. В по-настоящему хаотической системе ошибка растет очень быстро – по экспоненте. Острые углы игральной кости, вступающие в дело, когда идеальный математический куб отскакивает от плоской поверхности стола, дают именно такого рода экспоненциальное расхождение. Поэтому игральная кость кажется «случайной» по двум причинам: из-за человеческого незнания начальных условий, как с монеткой, и из-за хаотической, хотя и детерминированной динамики (т. е. в данном случае предопределенной, четко подчиняющейся физическим законам, которые позволяют точно предсказать конкретные результаты).

Все, что я до сих пор говорил, опиралось на ту или иную математическую модель, которую мы выбрали для описания процесса. Но зависит ли (не) случайный характер той или иной физической системы от модели, которую мы используем?

Чтобы ответить на этот вопрос, вспомним первый большой успех применения случайных моделей в физике. Речь идет о статистической механике. Эта теория лежит в основе термодинамики (по сути, физики газов), чье появление в известной степени мотивировалось необходимостью создавать более эффективные паровые двигатели. Какой максимальной эффективности может достичь паровая машина? Термодинамика ставит тут очень четкие и специфические ограничения.

На заре термодинамики главное внимание обращали на «крупномасштабные» переменные – объем, давление, температуру, количество теплоты. Все эти переменные связаны между собой «газовыми законами». К примеру, закон Бойля – Мариотта гласит, что произведение давления газа на его объем постоянно при данной температуре. Закон совершенно детерминистичен: зная объем, можно вычислить давление, и наоборот.

Однако вскоре стало очевидно, что физика газов на атомарном уровне, лежащая в основе газовых законов, носит, в сущности, случайный характер: молекулы газа беспорядочным образом отскакивают друг от друга. Людвиг Больцман первым стал изучать, как это отскакивание молекул (представляемых в рамках его модели как крошечные твердые сферы) соотносится с газовыми законами (и со многим другим). Согласно его теории, классические переменные – давление, объем и температура – представлены как статистические средние, что заставляет предположить присущий системе случайный характер. Обоснованно ли такое предположение?