Математический аппарат инженера | страница 24
23. Запишите множество упорядоченных пар (x, y), выражающих отношение «x — делитель y» на множестве целых чисел от 2 до 10 включительно. Является ли это отношение функцией? Обладает ли оно свойством транзитивности?
24. Запишите отношение между элементами множества цифр из задачи 13, выражающееся как «x имеет больше двух общих элементов с y».
25. Пусть x ∈ X, y ∈ Y и A — отношение между элементами множеств X и Y, выражаемое соотношением xAy. Укажите, в каких случаях А можно рассматривать как функцию:
а) X — множество студентов, Y - множество учебных дисциплин, xAy - «x изучает y»;
б) X - множество спортсменов, Y - рост в единицах длины, xAy - «x имеет рост y»;
в) X — множество компонентов электрической цепи, Y- множество узлов цепи, xAy - «x связан с y».
3. Матрицы
1. Матрица как таблица. Матрица – это совокупность чисел или объектов другой природы, расположенных в виде прямоугольной таблицы:
Такая таблица, состоящая из m строк и n столбцов, содержит mn клеток (позиций). При этом говорят, что матрица имеет размер m × n и ее называют ( m × n )-матрицей. Позиция на пересечении i -й строки и j -го столбца называется ij -клеткой.
Числа или любые другие объекты, расположенные в клетках таблицы, называют элементами матрицы. Положение элементов строго фиксировано: в каждой клетке должен располагаться только один элемент и ни одна клетка не должна оставаться свободной.
- 29 -
В общем обозначении элемента a>ij первый индекс i всегда указывает номер строки, а второй – номер столбца. Элемент, расположенный в ij -клетке, называют ij -элементом.
Матрица обозначается одной буквой (часто буквы, обозначающие матриц, набирают жирным шрифтом или снабжают какими-либо дополнительными символами). Однако независимо от принятого способа обозначения матрица всегда является совокупностью таблично упорядоченных элементов. Две матрицы равны, если и только если равны их соответствующие элементы, т.е. А = В при условии a>ij = b>ij (i = 1, 2, ... , n). Ясно, что сравнивать можно только матрицы одного и того же размера, между элементами которых определено отношение равенства.
Матрицы, элементами которых являются вещественные или комплексные числа, называют соответственно вещественными или комплексными. Пусть А — комплексная (m × n)-матрица с элементами a>ij = α>ij + iβ>ij. Матрица A̅ того же размера с элементами a>*>ij = α>ij + iβ>ij называется комплексно-сопряженной с А.
Часто для упрощения нулевые элементы в таблицу не записывают, но при этом имеют в виду, что пустые клетки тоже содержат числа (нули).