Математический аппарат инженера | страница 18



Множество, элементами которого являются все подмножества множества А, называют множеством подмножеств (множеством-степенью) А и обозначают через 𝓟(А). Так, для трехэлементного множества A ={a, b, c} имеем 𝓟(А) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

- 22 -

В случае конечного множества А, состоящего из n элементов, множество подмножеств 𝓟(А) содержит 2>n элементов. Доказательство основывается на сумме всех коэффициентов разложения бинома Ньютона или на представлении подмножеств n-разрядными двоичными числами, в которых 1 (или 0) соответствует элементам подмножеств.

Следует подчеркнуть различия между отношением принадлежности и отношением включения. Как уже указывалось, множество A может быть своим подмножеством (A ⊂ A), но оно не может входить в состав своих элементов (A ∉ A). Даже в случае одноэлементных подмножеств следует различать множество A={a} и его единственный элемент а. Отношение включения обладает свойством транзитивности: если A ⊂ B и B ⊂ C, то A ⊂ C. Отношение принадлежности этим свойством не обладает. Например, множество A={1, {2,3} ,4} в числе своих элементов содержит множество {2, 3}, поэтому можно записать: 2,3 ∈ {2, 3} и {2, 3} ∈ A. Но из этого вовсе не следует, что элементы 2 и 3 содержатся в A (в приведенном примере мы не находим 2 и 3 среди элементов множества A, т. е. 2, 3 ∉ A.

5. Задание множеств.

Множество A = {a>1, a>2, ... a>n} можно задать простым перечислением его элементов. Например, спецификация задает множество деталей изделия, каталог — множество книг в библиотеке. Но этот способ не пригоден для задания бесконечных множеств и даже в случае конечных множеств часто практически нереализуем.

Рассмотрим в качестве примера фасад 16-этажного дома с 38 окнами в каждом этаже. В вечернее время каждое из окон дома может быть освещено или затемнено, т. е. 2>608 ≈ 10>183 находиться в двух состояниях. Определенные совокупности освещенных окон можно рассматривать как некоторые образы. Считая все окна (их число равно 38*16=608) различными по их расположению на фасаде, каждый такой образ можно связать с соответствующим подмножеством освещенных окон. Тогда количество всех образов равно количеству элементов множества подмножеств всех окон, т. е. . Полученное число настолько большое, что его трудно даже представить. Оно несравнимо больше числа атомов во всей видимой вселенной, которое равно примерно 10>37. Если бы каждый атом превратился во вселенную, то и тогда на один атом приходилось бы 10