По следам бесконечности | страница 36



— А если Вселенная все-таки бесконечна, способна ли наука познать эту бесконечность?

— Бесконечность нельзя охватить обычными человеческими понятиями. Для этого необходим сверхъестественный носитель мудрости — господь бог…

На том и закончилась эта беседа, показавшая еще раз, что современные защитники религии стараются обратить в свою пользу любые данные науки, любые се выводы и достижения в познании окружающей природы. И делают это довольно искусно. Хотя, разумеется, это всего лишь ловкий тактический прием. Существо религии от этого не изменилось: как и прежде, все от бога. Но в наш век космических полетов и атомной энергии на одной слепой вере в сверхъестественное далеко не уедешь. Вот современные богословы и стараются сделать религию более приемлемой для современного человека, придать ей видимость научной обоснованности. И для этой цели они не только ловко жонглируют научными данными, но идут и на прямую фальсификацию.

Странный мир множеств

Только разработка понятия «предела» помогла уяснить природу бесконечно малых величин. Но само это понятие получило строгое обоснование лишь в теории бесконечных множеств, создание которой стало одним из выдающихся достижений математики XIX столетия. Именно в этот период началось изучение множеств, состоящих из бесконечно большого числа элементов.

Пожалуй, самый первый шаг был сделай еще Галилео Галилеем. Великим флорентийский ученый обнаружил, что можно установить так называемое взаимно однозначное соответствие между натуральными числами и их квадратами. Для этого достаточно соотнести каждому целому числу результат его возведения во вторую степень. Таким образом, получается, что множество квадратов натуральных чисел так же велико, как и множество всех натуральных чисел. Галилей обратил внимание на довольно неожиданное обстоятельство: из этого следовало, что бесконечное множество может быть равно своему подмножеству — ведь далеко не каждое целое число является квадратом какого-либо другого целого числа.

А это, в свою очередь, означало, что аксиома «часть меньше целого» может оказаться недействительной, когда речь идет о бесконечности. Замечание великого физика лишь усилило недоверие к бесконечным множествам. Кстати, это недоверие разделял и сам Галилей, а много позже, в 1833 году, математик Коши, один из создателей теории пределов, цитировал его высказывания для подтверждения подобной же точки зрения.

И лишь в середине XIX столетия чешский математик Бернард Больцано (1781–1848) пришел к обоснованному выводу о том, что отличие конечных множеств от бесконечных в том именно и состоит, что бесконечное множество равномощно своей собственной части.