По следам бесконечности | страница 23



Архимед был одним из последних представителей эпохи великих мыслителей и математиков Древней Греции.

Глава II. ОТ НЬЮТОНА ДО КАНТОРА

Лейбниц против Ньютона

Новый этап в развитии представлений о бесконечности связан с созданием так называемого математического анализа — изобретением дифференциального и интегрального исчислений, которое справедливо считается одним из величайших достижений науки XVII века.

Важнейшим событием того времени и бесспорно одним из крупнейших в истории естествознания и человеческой мысли вообще было появление ньютоновского труда «Математические начала натуральной философии».

Эта книга как бы подвела итоги всему тому, что было сделано за предшествующие тысячелетия в изучении простейших форм движения материи.

По словам академика С. И. Вавилова, сложные перипетии развития механики, физики и астрономии, выраженные в именах Аристотеля, Птоломея, Коперника, Галилея, Кеплера, Декарта, поглощались и заменялись гениальной ясностью и стройностью «Начал».

По образу и подобию «Начал» возникла «классическая физика», применявшая ньютоновское учение о пространстве, времени, массах и силах к решению самых разнообразных задач механики, физики и астрономии.

Математические дарования, писал академик С. И. Вавилов, подобно музыкальным нередко врожденны, проявляются рано и органически определяют склад ума данного человека.

Исаак Ньютон (1643–1727) как раз и был именно таким врожденным математиком.

«Для того, чтобы научиться математике, — говорил Фонтенель в „Похвальном слове памяти Ньютона“ в 1727 году, — Ньютон не изучал Эвклида, который казался ему слишком ясным, слитком простым, не стоящим затраты времени; он знал его в некотором смысле раньше, чем его прочитал; один взгляд на текст теорем мгновенно создавал и доказательство… По отношению к Ньютону можно было бы применить то, что Лукиан сказал о Ниле, истоки которого были неизвестны древним: „Человеку не позволено видеть Нил слабым и рождающимся“».

Вероятно, эта пышная фраза, которые так любило XVIII столетие, не совсем точно отражает существо дела, ибо известно, что Ньютон как раз мыслил геометрически, классический геометрический метод древних был основным орудием его математических изысканий.

Что же касается Эвклида, то он вряд ли обошел и его своим вниманием: не так давно был найден принадлежавший Ньютону экземпляр геометрии Эвклида, на полях которого великий физик оставил множество собственных заметок и чертежей.