Людвиг Больцман: Жизнь гения физики и трагедия творца | страница 45
В 1972 г. в Вене, на родине физика, состоялась международная конференция, посвященная столетию создания Больцманом кинетического уравнения. Доклады более чем 20 крупных ученых мира были посвящены не столько истории создания этого замечательного уравнения, сколько современному состоянию проблем, так или иначе связанных с этим неиссякаемым источником идей и приложений.
Кинетическому уравнению, полученному Больцманом, должна удовлетворять функция распределения при произвольном состоянии газа и любых действующих на него полях. Больцман применил полученные им результаты для решения принципиальных вопросов, причем более общая постановка проблемы дала ему возможность получить в виде частных решений уже имеющиеся результаты. Проведенный им в этой работе анализ показал, что если на газ не действуют внешние силы, то в случае равновесия функция распределения частиц по скоростям будет неизменной во времени тогда, когда она совпадает с распределением Максвелла. Тем самым Больцман получил доказательство стационарности максвелловского распределения и указал, что его вывод «есть не что иное, как доказательство распределения Максвелла, выраженное нашим современным языком». В более сложном случае, когда газ находится в поле внешних сил, Больцман получил в виде решения кинетического уравнения распределение Максвелла — Больцмана (12).
Ученый исследует и более общий случай, когда функция распределения меняется во времени, и ставит перед собой задачу показать, что в газе, предоставленном самому себе, с течением времени произвольная функция распределения будет все больше и больше приближаться к функции, описывающей состояние термодинамического равновесия, т. е. к максвелловской. Способ, который он выбирает для доказательства этого предположения, ошеломляет как своей оригинальностью, так и плодотворностью полученных результатов.
Больцман вводит в рассмотрение новую функцию Е ~ f∙lnf и строго доказывает, что производная от этой функции по времени dE/dt ≤ 0, или, что то же самое, Е со временем может только уменьшаться или, достигнув предельного значения, оставаться постоянной. Этот последний случай соответствует установлению в газе равновесного распределения. Функция Е определяет, таким образом, меру отклонения газа от равновесного состояния. Тем самым Больцман доказал единственность распределения Максвелла и решил последнюю задачу, связанную с его теоретическим доказательством.
Однако и этот фундаментальный результат не исчерпывает всей широты анализа, выполненного Больцманом в работе «Дальнейшее изучение теплового равновесия молекул газа». Доказанное им свойство функции