2a. Пространство. Время. Движение | страница 48
Что случится потом, после многих циклов? Это зависит от характера и величины трения. Предположим, что мы придумали такое устройство, что при изменении амплитуды сила трения оказывается пропорциональной другим силам — инерции и натяжению. Иначе говоря, при малых колебаниях трение слабее, чем при колебаниях с большой амплитудой. Обычно сила трения таким свойством не обладает, так что можно предположить, что в нашем случае действуют силы трения особого рода — силы, пропорциональные скорости; тогда для больших колебаний эти силы будут больше, а для малых — меньше. Если у нас именно такой вид трения, то в конце каждого цикла система будет находиться в тех же условиях, что и в начале цикла, только всего будет меньше. Все силы будут меньше в тех же пропорциях: сила пружинки немного ослабнет, инерциальные эффекты будут меньше. Ведь теперь и ускорения грузика будут меньше, и сила трения ослабеет (об этом мы позаботились, создавая наше устройство). Если бы мы имели дело с такими силами трения, то увидели бы, что каждое колебание в точности повторяет первое, только амплитуда его стала меньше. Если после первого цикла амплитуда составляла, например, 90% первоначальной, то после второго цикла она будет равна 90% от 90% и т. д., т. е. размах колебаний после каждого цикла уменьшается в одинаковое число раз. Кривая, ведущая себя таким образом,— это экспоненциальная функция. Она изменяется в одинаковое число раз на любых интервалах одинаковой длины. Иначе говоря, если отношение амплитуды одного цикла к амплитуде предыдущего равно а, то такое же отношение для второго цикла равно а>2, затем а>3 и т. д. Таким образом, амплитуда колебаний после n циклов равна
А=А>0а>n. (25.10)
Но, конечно, n~t, поэтому общее решение будет произведением какой-нибудь периодической функции sinwt или соswt на амплитуду, которая ведет себя примерно как b>t. Если b положительно и меньше единицы, то его можно записать в виде е>-c.
Вот почему решение задачи о колебаниях при учете трения будет выглядеть примерно как
ехр(-ct)coswt. Это очень просто.
Что случится, если трение не будет таким искусственным; например обычное трение о стол, когда сила трения постоянна по величине, не зависит от размаха колебаний и меняет свое направление каждые полпериода? Тогда уравнения движения станут нелинейными; решить их трудно, поэтому придется прибегнуть к описанному в гл. 2 численному решению или рассматривать по отдельности каждую половину периода. Самым мощным, конечно, является численный метод; с его помощью можно решить любое уравнение. Математический анализ используется лишь для решения простых задач.