2a. Пространство. Время. Движение | страница 4
Теперь нужно понять физический смысл w>0. Мы знаем, что косинус «повторяется» после того, как угол изменится на 2я. Поэтому x=cosw>0t будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на 2p. Величину w>0t часто называют фазой движения. Чтобы изменить w>0t на 2p, нужно изменить t на t>0 (период полного колебания); конечно, t>0находится из уравнения w>0t>0=2p. Это значит, что w>0t>0 нужно вычислять для одного цикла, и все будет повторяться, если увеличить t на t>0; в этом случае мы увеличим фазу на 2p. Таким образом,
Значит, чем тяжелее грузик, тем медленнее пружинка будет колебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожестче, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.
Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не говорит об амплитуде колебания. Амплитуду колебания, конечно, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.
Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Решение x=acosw>0t соответствует случаю, когда в начальный момент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например улучить момент, когда уравновешенная пружинка покоится (х=0), и резко ударить по грузику; это будет означать, что в момент t=0 пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) — косинус нужно заменить на синус. Бросим в косинус еще один камень: если x=cosw>0t—решение, то, войдя в комнату, где качается пружинка, в тот момент (назовем его «t=0»), когда грузик проходит через положение равновесия (x=0), мы будем вынуждены заменить это решение другим. Следовательно, x=cosw>0t не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойством обладает, например, решение x=acosw>0(t-t>1), где t>1 — какая-то постоянная. Далее, можно разложить