2a. Пространство. Время. Движение | страница 17



Мы вычисляли логарифмы точно так же, как это делал мистер Бриггс из Галифакса в 1620 г. Закончив работу, он сказал: «Я вычислил последовательно 54 квадратных корня из 10». На самом деле он вычислил только 27 первых корней, а потом сделал фокус с D. Вычислить 27 раз квадратный корень из 10, вообще-то говоря, немного сложнее, чем 10 раз, как это сделали мы. Однако мистер Бриггс сделал гораздо большее: он вычислял корни с точностью до шестнадцатого десятичного знака, а когда опубликовал свои таблицы, то оставил в них лишь 14 десятичных знаков, чтобы округлить ошибки. Соста­вить таблицы логарифмов с точностью до четырнадцатого деся­тичного знака таким методом — дело очень трудное. Зато це­лых 300 лет спустя составители таблиц логарифмов занимались тем, что уменьшали таблицы мистера Бриггса, выкидывая из них каждый раз разное число десятичных знаков. Только в последнее время при помощи электронных вычислительных ма­шин оказалось возможным составить таблицы логарифмов не­зависимо от мистера Бриггса. При этом использовался более эффективный метод вычислений, основанный на разложении логарифма в ряд.

Составляя таблицы, мы натолкнулись на интересный факт: если показатель степени e очень мал, то очень легко вычислить 10>e; это просто 1+2,3025е. Это значит, что 10>n/>2>,>3025 =1+n для очень малых n. Кроме того, мы говорили с самого начала, что вычисляем логарифмы по основанию 10 только потому, что у нас на руках 10 пальцев и по десяткам нам считать удобнее. Логарифмы по любому другому основанию получаются из ло­гарифмов по основанию 10 простым умножением. Теперь на­стало время выяснить, не существует ли математически выде­ленного основания логарифмов, выделенного по причинам, не имеющим ничего общего с числом пальцев на руке. В этой есте­ственной шкале формулы с логарифмами должны выглядеть проще. Составим новую таблицу логарифмов, умножив все логарифмы по основанию 10 на 2,3025.... Это соответствует пере­ходу к новому основанию — натуральному, или основанию е. Заметим, что log>e (l+n)»n или е>n»1+n, когда n®0.

Легко найти само число е; оно равно 10>1/>2>,>3025 или 10>0>,>434294>... Это 10 в иррациональной степени. Для вычисления е можно воспользоваться таблицей корней из 10. Представим 0,434294... сначала в виде 444,73/1024, а числитель этой дроби в виде суммы 444,73=256+128+32+16+2+0,73. Число е поэтому равно произведению чисел

(1,77828)·(1,33352)·(1,074607)·(1,036633)·(1,018152)X(1,009035)(1,001643) =2,7184.