3a. Излучение. Волны. Кванты | страница 26



, то новое w' сопоставляется с t', a k' — с координатой х'/с>2. Иначе говоря, при преобразовании Лоренца w и k изменяются так же, как t и х. Эти величины w и k составляют так называемый четырехвектор. Четырехкомпонентная величина, преобразующаяся как время и координа­ты, и есть четырехвектор. Здесь все правильно, за исключением одного — четырехвектор имеет четыре компоненты, а у нас фигурируют только две! Как уже говорилось, со и k подобны времени и одной координате пространства; для введения двух остальных координат надо изучить распространение света в трехмерном пространстве.

Пусть задана система координат х, у, z и волна движется в пространстве с волновым фронтом (фиг. 34.11). Длина волны есть К, а направление распространения волны не совпадает ни с одной осью координат.

Фиг. 34.11. Плоская волна, движущаяся под углом.

Какой вид имеет формула движения для такой волны? Ответ очевиден: это cos (a>t-ks), где k = 2п/X a s (расстояние вдоль направления движения вол­ны) — проекция вектора положения на направление движе­ния. Запишем это следующим образом: пусть r есть вектор точки в пространстве, тогда s есть г-е>k, где e>k — единичный вектор в направлении движения волны. Иначе говоря, s равно rcos(r-e>k), проекции расстояния на направление движе­ния. Следовательно, наша волна описывается формулой cos(wt-ke>k·r).

Оказывается очень удобным ввести вектор k, называемый волновым вектором', величина его равна волновому числу 2p/l, а направление совпадает с направлением распространения волны

(34.19)

Благодаря введению этого вектора волна приобретает вид cos(wt-k·r), или cos(wt-k>xx-k>yy-k>zz). Выясним смысл про­екций k, например k>x. Очевидно, k>x есть скорость изменения фазы в зависимости от координаты х. Фиг 34.11 подсказывает нам, что фаза меняется с ростом х так, как если бы вдоль х бежала волна, но соответствующая ей длина волны оказывается больше по величине. «Длина волны в направлении х» больше истинной на множитель, равный секансу угла a между осью х и направле­нием движения истинной волны:

(34.20)

Следовательно, скорость изменения фазы, обратно пропорцио­нальная X, в направлении х оказывается меньше на множитель cos а; но этот же множитель содержит и k>x, равный модулю k, умноженному на косинус угла между k и осью х!

Итак, мы выяснили смысл волнового вектора, описывающего распространение волны в трехмерном пространстве. Четыре величины со, k>x, k>y, k>z преобразуются в теории относительности как четырехвектор, причем со соответствует времени, a k