4a. Кинетика. Теплота. Звук | страница 60
Глава 51
ВОЛНЫ
§ 1. Волна от движущегося предмета
§ 2. Ударные волны
§ 3. Волны в твердом теле
§ 4. Поверхностные волны
§ 1. Волна от движущегося предмета
Мы закончили количественный анализ волн, но посвятим еще одну дополнительную главу некоторым качественным оценкам различных явлений, связанных с волнами; для подробного анализа они слишком сложны. Волнами мы занимаемся уже на протяжении нескольких глав, поэтому предмет настоящей главы было бы вернее назвать «некоторые из более сложных явлений, связанных с волнами».
Первым объектом нашего обсуждения будет эффект, производимый источником волн, движущимся со скоростью, превышающей скорость распространения волн, т. е. быстрее их фазовой скорости. Рассмотрим сначала волны, которые, подобно звуку или свету, имеют определенную постоянную скорость. Если источник звука движется со сверхзвуковой скоростью, то произойдет нечто вроде следующего. Пусть в данный момент источник, находящийся в точке x>1, порождает звуковую волну (фиг. 51.1), тогда в следующий момент источник переместится в точку х>2, а волна из точки х>1распространится в радиусе r>1, который меньше расстояния, пройденного источником, а из точки х>2, разумеется, пойдет другая волна.
Фиг. 51.1. Фронт ударной волны, образующий конус с вершиной в источнике и углом полураствора q=arcsin(c>w/v).
Когда источник переместится еще дальше, в точку х>3, и отсюда тоже пойдет волна, то волна из точки х>2 распространится в радиусе r>2, а волна из точки х>1— в радиусе r>3. Конечно, все это происходит непрерывно, а не какими-то этапами, и поэтому получается целый ряд таких волновых колец с общей касательной линией, проходящей через центр источника. Мы видим, что источник, вместо того чтобы порождать сферические волны, как это произошло бы, будь он неподвижен, порождает фронт, образующий в трехмерном пространстве конус или в двухмерном пару пересекающихся прямых линий. Из рисунка нетрудно найти угол между этими двумя линиями. За данный отрезок времени источник проходит расстояние, пропорциональное его скорости v, скажем х>3-х>1 . Тем временем фронт волны распространится на расстояние r>3, пропорциональное c>w— скорости волны. Ясно поэтому, что синус угла полураствора равен отношению скорости волны к скорости источника, а это может быть только тогда, когда c>wменьше v, или скорость объекта больше скорости волны:
sinq=c>w/v. (51.1)
Интересно, что движущийся предмет вовсе не обязан быть