4a. Кинетика. Теплота. Звук | страница 55
Но то, что верно для 7, очевидно, верно и для любого другого целого числа. Теперь мы запишем результат нашего доказательства в следующей, более элегантной математической форме. Если m и n — целые отличные от нуля числа и если w=2p/T, то
В предыдущих главах для описания простого гармонического движения было удобно пользоваться экспоненциальной функцией. Вместо coswt мы использовали Re ехр(iwt) —действительную часть экспоненциальной функции. В этой главе мы использовали синус и косинус, потому что с ними, пожалуй, немного проще проводить доказательства. Однако наш окончательный результат, уравнение (50.13), можно записать в более компактной форме:
где а>n — комплексное число а>n-ib>n(с b>0=0). Если мы всюду будем пользоваться одним и тем же обозначением, то должны также написать
Итак, теперь мы умеем раскладывать периодическую волну на ее гармонические компоненты. Эта процедура называется разложением в ряд Фурье, а отдельные члены называются фурье-компонентами. Однако до сих пор мы не показали, что, определив все фурье-компоненты и затем сложив их, мы действительно придем назад к нашей функции f(t). Математики доказали, что для широкого класса функций (в сущности, для всех функций, интересных физикам), которые можно проинтегрировать, мы снова получаем f(t). Но есть одно небольшое исключение. Если функция f(t) разрывна, т. е. если она неожиданно прыгает от одного значения к другому, сумма Фурье такой функции даст в точке разрыва значение, лежащее посредине между верхним и нижним значениями. Таким образом, если у нас есть странная функция f(t)=0 для 0≤t
В качестве упражнения предлагаем читателю найти ряд Фурье для функции, показанной на фиг. 50.3.