5a. Электричество и магнетизм | страница 2
Возьмем небольшую воображаемую поверхность, окружающую точку Р>0(фиг. 5.1). Если повсюду вблизи Р>0электрическое поле направлено к Р>0, то поверхностный интеграл от нормальной составляющей определенно не равен нулю. В случае, изображенном на фигуре, поток через поверхность должен быть отрицательным числом. Но, согласно закону Гаусса, поток электрического поля сквозь любую поверхность пропорционален количеству заряда внутри нее. Если в Р>0нет заряда, то изображенное нами поле нарушит закон Гаусса. Уравновесить положительный заряд в пустом пространстве, в точке, в которой нет какого-нибудь отрицательного заряда, невозможно. Но если положительный заряд размещен в центре распределенного отрицательного заряда, то он может находиться в равновесии. Конечно, распределение отрицательного заряда должно само удерживаться на своем месте посторонними, неэлектрическими силами!
Этот вывод мы проделали для точечного заряда. Соблюдается ли он для сложной расстановки зарядов, относительное расположение которых чем-то фиксировано (скажем, стержнями)? Разберем этот вопрос на примере двух одинаковых зарядов, закрепленных на стержне. Может ли эта комбинация в каком-то электрическом поле застыть в равновесии?
Фиг. 5.2. Заряд может быть в равновесии, если имеются механические ограничения.
И опять ответ гласит: нет. Суммарная сила, действующая на стержень, не способна возвращать его к положению равновесия при любых направлениях смещения.
Обозначим суммарную силу, действующую на стержень ' в любом положении, буквой F. Тогда F — это векторное поле. Повторяя те же рассуждения, что и выше, мы придем к заключению, что в положении устойчивого равновесия дивергенция F должна быть числом отрицательным. Но суммарная сила, действующая на стержень, равна произведению первого заряда на поле в том месте, где он находится, плюс произведение второго заряда на поле в том месте, где он находится:
(5.1)
Дивергенция F дается выражением
Если каждый из двух зарядов q>1и q>2находится в свободном пространстве, то и С·Е>1, и С·Е>2 равны нулю, и С·F тоже нуль, а не отрицательное число, как должно было бы быть при равновесии. Дальнейшее расширение этого доказательства покажет, что никакая жесткая комбинация любого числа зарядов не способна замереть в положении устойчивого равновесия в электростатическом поле в пустом пространстве.