6. Электродинамика | страница 8



Под «реальным» полем мы понимаем здесь вот что: реальное поле — это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии. Если в точке Р имеется заряженная частица, то на нее оказывают влияние другие заряды, расположенные на каком-то удалении от Р. Один прием, которым можно описать взаимодействие,— это говорить, что прочие заряды создают какие-то «условия» (какие — не имеет значения) в окрестности Р. Если мы знаем эти условия (мы их описываем, задавая электрическое и маг­нитное поля), то можем полностью определить поведение части­цы, нимало не заботясь после о том, что именно создало эти условия.

Иными словами, если бы эти прочие заряды каким-то обра­зом изменились, а условия в Р, описываемые электрическим и магнитным полем в точке Р, остались бы прежними, то движение заряда тоже не изменилось бы. «Реальное» поле тогда есть сово­купность чисел, заданных так, что то, что происходит в некото­рой точке, зависит только от чисел в этой точке и нам больше не нужно знать, что происходит в других местах. Именно с таких позиций мы и хотим выяснить, является ли векторный потен­циал «реальным» полем.

Вас может удивить тот факт, что векторный потенциал опре­деляется не единственным образом, что его можно изменить, добавив к нему градиент любого скаляра, а силы, действующие на частицы, не изменятся. Однако это не имеет ничего общего с вопросом реальности в том смысле, о котором мы говорили, К примеру, магнитное поле как-то меняется при изменении относительного движения (равно как и Е или А). Но нас ни­сколько не будет заботить, что поле можно изменять таким образом. Нам это безразлично; это никак не связано с вопросом о том, действительно ли векторный потенциал—«реальное» поле, пригодное для описания магнитных эффектов, или же это просто удобный математический прием.

Мы должны еще сделать кое-какие замечания о полезности векторного потенциала А. Мы видели, что им можно пользо­ваться в формальной процедуре расчета магнитных полей заданных токов, в точности как j может применяться для оты­скания электрических полей. В электростатике мы видели, что j давалось скалярным интегралом



(15.22)


Из этого j мы получали три составляющих Е при помощи трех дифференцирований. Обычно это было легче, чем вычислять три интеграла в векторной формуле


(15.23)

Во-первых, их три, а во-вторых, каждый из них вообще-то немного посложнее, чем (15.22).

В магнитостатике преимущества не так ясны. Интеграл для А уже сам по себе векторный: