6. Электродинамика | страница 58
Так Максвелл совершил одно из великих обобщений физики! До него был свет, было электричество и был магнетизм. Причем два последних явления были объединены экспериментальными работами Фарадея, Эрстеда и Ампера. Потом внезапно свет не стал уже больше «чем-то еще», а был электричеством и магнетизмом в новой форме, небольшими кусками электрического и магнитного полей, которые распространяются в пространстве самостоятельно.
Мы обращали ваше внимание на некоторые черты этого особого решения, которые, однако, справедливы для любой электромагнитной волны: магнитное поле перпендикулярно направлению движения фронта волны; электрическое поле также перпендикулярно направлению движения фронта волны; и два вектора Е и В перпендикулярны друг другу. Далее, величина электрического поля Е равна произведению с на величину магнитного поля В. Эти три факта — что оба поля поперечны направлению распространения, что В перпендикулярно Е и что Е=сВ — верны вообще для любой электромагнитной волны. Наш частный случай — хороший пример, он показывает все основные свойства электромагнитных волн.
§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение
Теперь стоило бы заняться немного математикой; мы запишем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.
Начнем с С·В=0 — простейшего из уравнений. Мы знаем, что оно подразумевает, что В — есть ротор чего-то. Поэтому, если вы записали
B = СXA, (18.16)
то считайте, что уже решили одно из уравнений Максвелла. (Между прочим, заметьте, что оно остается верно для другого вектора А', если A'=A+Сty, где y— любое скалярное поле, потому что ротор Сy — нуль и В — по-прежнему то же самое. Мы говорили об этом раньше.)
Теперь разберем закон Фарадея СXE= -dB/dt, потому что он не содержит никаких токов или зарядов. Если мы запишем В как СXA и продифференцируем по t, то сможем переписать закон Фарадея в форме
СXE = - d/dtСXA.
Поскольку мы можем дифференцировать сначала либо по времени, либо по координатам, то можно написать это уравнение также в виде
(18.17)
Мы видим, что Е+дА/дt — это вектор, ротор которого равен нулю. Поэтому такой вектор есть градиент чего-то. Когда мы занимались электростатикой, у нас было СXE=0, и мы тогда решили, что Е — само градиент чего-то. Пусть это градиент от -j (минус для технических удобств). То же самое сделаем и для E