6. Электродинамика | страница 15



много меньшей L, маг­нитное поле однородно. (Это легко устроить, надо только по­дальше отнести поглотитель.) Чтобы подсчитать сдвиг по фазе, мы должны взять два интеграла от А вдоль двух траекторий (1) и (2).



Фиг. 15.8. Сдвиг интерференционной картины из-за наличия полоски магнитного поля.


Как мы видели, они различаются просто на поток В между этими путями. В нашем приближении поток равен Bwd. Раз­ность фаз для двух путей поэтому равна

(15.37)


Мы замечаем, что в принятом приближении сдвиг фаз не зави­сит от угла. Так что опять-таки эффект сводится к сдвигу всей картины вверх на величину Dx. Из формулы (15.28)

Подставляя d-d = 0) из (15.37), получаем



(15.38)


Такой сдвиг равноценен тому, что все траектории отклоняются на небольшой угол а (см. фиг. 15.8), равный


(15.39)

По классическим воззрениям мы тоже должны были ожи­дать, что узкая полоска магнитного поля отклонит все траекто­рии на какой-то маленький угол, скажем a' (фиг. 15.9,а). Когда электроны проходят через магнитное поле, они подвергаются действию поперечной силы qvXВ в течение времени wlv. Изменение их поперечного импульса просто равно ему самому, так что


(15.40)



Фиг. 15.9. Отклонение частицы из-за прохождения ее через маг­нитное поле.

Угловое отклонение (фиг. 15.9,6) равно отношению этого поперечного импульса к полному импульсу р. Мы получаем


: Этот результат можно сравнить с уравнением (15.39), в котором та же вели­чина вычислялась квантовомеханически. Но связь между классической и квантовой механикой в том и состоит, что частице с импульсом р ставится в соответствие квантовая амплитуда, изменяющаяся как волна длиной l. = h/p. В соответствии с этим уравнением а и а' оказываются идентичными; и классические и квантовые выкладки приводят к одному и тому же.

Из этого анализа мы видим, как получается, что векторный потенциал, который в квантовой механике появляется в явном виде, вызывает классическую силу, зависящую только от его производных. В квантовой механике существенна только ин­терференция между соседними путями; в ней всегда оказывается, что эффект зависит только от того, как сильно поле А меняется от точки к точке, а значит, только от производных А, а не от него самого. Несмотря на это, векторный потенциал А (наряду с сопровождающим его скалярным потенциалом j), по-види­мому, приводит к более прямому описанию физических процес­сов. Чем глубже мы проникаем в квантовую теорию, тем яснее и прозрачней нам это становится. В общей теории — квантовой электродинамике — в системе уравнений, заменяющих собой уравнения Максвелла, векторные и скалярные потенциалы уже считаются фундаментальными величинами. Векторы Е и В постепенно исчезают из современной записи физических зако­нов: их вытесняют А и j.