8a. Квантовая механика I | страница 48
Посмотрим теперь, что в такой же ситуации происходит с точки зрения классической физики. Там мы имели бы пучок света, электрическое поле которого меняется тем или иным образом,— скажем «неполяризованный» пучок. После того как он прошел бы через первый поляроид, электрическое поле величины x начало бы колебаться в направлении х' ; мы бы начертили его в виде колеблющегося вектора с пиковым значением x>0на диаграмме фиг, 9.4.
Фиг. 9.4. Классическая картина электрического вектора x.
Если бы затем свет достиг второго поляроида, то черен него прошла бы только x-компонента x>0cosq электрического поля. Интенсивность была бы пропорциональна квадрату поля, т. е. x2cos>2q. Значит, проходящая сквозь последний поляроид энергия была бы в cos>2q слабее энергии, поступающей в него.
И классическая, и квантовая картины приводят к одинаковым результатам. Если бы вы бросили на второй поляроид 10 миллиардов фотонов, а средняя вероятность прохождения каждого из них была бы, скажем, >3/>4, то следовало бы ожидать, что сквозь него пройдет >3/>4 от 10 миллиардов. Равным образом и энергия, которую они унесли бы, составила бы >3/>4 той энергии, которую вам хотелось протолкнуть через поляроид. Классическая теория ничего не говорит о статистике этих вещей, она попросту утверждает, что энергия, которая пройдет насквозь, в точности равна >3/>4 той энергии, которая была пущена в поляроид. Это, конечно, немыслимо, если фотон только один. Не бывает >3/>4 фотона. Либо он весь здесь, либо его вовсе нет. И квантовая механика говорит нам, что он бывает весь здесь >3/>4 времени. Связь обеих теорий ясна.
А как же с другими сортами поляризации? Скажем, с правой круговой поляризацией? В классической теории компоненты х и у правой круговой поляризации были равны, но сдвинуты по фазе на 90°. В квантовой теории фотон, поляризованный по кругу вправо («правый»), обладает равными амплитудами быть |х>- и |у>-поляризованным, и эти амплитуды сдвинуты по фазе на 90°. Обозначая состояние «правого» фотона через |II>, а состояние «левого» фотона через |Л>, можно написать [см. гл. 33, § 1 (вып. 3)]
множитель 1/Ц2 поставлен, чтобы нормировать состояния. С помощью этих состояний можно подсчитывать любые эффекты, связанные с фильтрами или интерференцией, применяя законы квантовой теории. При желании можно также выбрать в качестве базисных состояний |П> и |Л> и все представлять через них. Надо только предварительно убедиться, что <П|Л>=0, а это можно сделать, взяв сопряженный вид первого уравнения [см. (6.13)] и перемножив их друг с другом. Можно раскладывать свет, пользуясь в качестве базиса и