8a. Квантовая механика I | страница 48



/>4 времени фотон будет проходить через него, a >1/>4времени будет нагревать поляроид, поглощаясь внутри него.

Посмотрим теперь, что в такой же ситуации происходит с точки зрения классической физики. Там мы имели бы пучок света, электрическое поле которого меняется тем или иным обра­зом,— скажем «неполяризованный» пучок. После того как он прошел бы через первый поляроид, электрическое поле величи­ны x начало бы колебаться в направлении х' ; мы бы начертили его в виде колеблющегося вектора с пиковым значением x>0на диаграмме фиг, 9.4.

Фиг. 9.4. Классическая картина электрического вектора x.

Если бы затем свет достиг второго поля­роида, то черен него прошла бы только x-компонента x>0cosq электрического поля. Интенсивность была бы пропорциональна квадрату поля, т. е. x2cos>2q. Значит, проходящая сквозь последний поляроид энергия была бы в cos>2q слабее энергии, поступающей в него.

И классическая, и квантовая картины приводят к одинако­вым результатам. Если бы вы бросили на второй поляроид 10 миллиардов фотонов, а средняя вероятность прохождения каждого из них была бы, скажем, >3/>4, то следовало бы ожидать, что сквозь него пройдет >3/>4 от 10 миллиардов. Равным образом и энергия, которую они унесли бы, составила бы >3/>4 той энер­гии, которую вам хотелось протолкнуть через поляроид. Клас­сическая теория ничего не говорит о статистике этих вещей, она попросту утверждает, что энергия, которая пройдет на­сквозь, в точности равна >3/>4 той энергии, которая была пущена в поляроид. Это, конечно, немыслимо, если фотон только один. Не бывает >3/>4 фотона. Либо он весь здесь, либо его вовсе нет. И квантовая механика говорит нам, что он бывает весь здесь >3/>4 времени. Связь обеих теорий ясна.

А как же с другими сортами поляризации? Скажем, с пра­вой круговой поляризацией? В классической теории компо­ненты х и у правой круговой поляризации были равны, но сдвинуты по фазе на 90°. В квантовой теории фотон, поляризо­ванный по кругу вправо («правый»), обладает равными ампли­тудами быть |х>- и |у>-поляризованным, и эти амплитуды сдвинуты по фазе на 90°. Обозначая состояние «правого» фотона через |II>, а состояние «левого» фотона через |Л>, можно написать [см. гл. 33, § 1 (вып. 3)]

множитель 1/Ц2 поставлен, чтобы нормировать состояния. С помощью этих состояний можно подсчитывать любые эффекты, связанные с фильтрами или интерференцией, применяя законы квантовой теории. При желании можно также выбрать в каче­стве базисных состояний |П> и |Л> и все представлять через них. Надо только предварительно убедиться, что <П|Л>=0, а это можно сделать, взяв сопряженный вид первого уравнения [см. (6.13)] и перемножив их друг с другом. Можно расклады­вать свет, пользуясь в качестве базиса и