8a. Квантовая механика I | страница 47
Фиг. 9.2. Оси координат, перпендикулярные к вектору импульса фотона.
Выходящий наружу фотон будет в состоянии |х'>. Но всякое состояние может быть представлено в виде линейной комбинации базисных состояний, а формула для такой комбинации известна:
Иначе говоря, если фотон пройдет сквозь кусок поляроида, повернутого на угол q (по отношению к х), он все равно может быть разрешен на |x>- и |y>-пучки (например, куском кальцита). Или, если угодно, вы можете в своем воображении просто разбить его на х- и y-компоненты. Любым путем вы получите амплитуду cosq быть в |х>-состоянии и амплитуду sinq быть в |y>-состоянии.
Теперь поставим такой вопрос: пусть фотон поляризован в направлении х' куском поляроида, повернутого на угол q,
и пусть он попадет в другой поляроид, повернутый на угол нуль (фиг. 9.3).
Фиг. 9.3. Две поляроидные пластины с углом q между плоскостями поляризации.
Что тогда произойдет? С какой вероятностью он пройдет сквозь поляроид? Ответ: Пройдя первый поляроид, фотон наверняка оказывается в состоянии |х'>. Через второй поляроид он протиснется лишь в том случае, если будет в состоянии |x> (и поглотится им, оказавшись в состоянии |у>). Значит, мы спрашиваем, с какой вероятностью фотон окажется в состоянии |x>? Эту вероятность мы получим из квадрата модуля амплитуды
Но <x|y>=0; это следует из физики, так должно быть, если |х>и |у>суть базисные состояния, а <x|x>=l. И мы получаем
<x|x'>=cosq,
а вероятность равна cos>2q. Например, если первый поляроид поставлен под углом 30°, то