8a. Квантовая механика I | страница 44



Если сделать то же самое с s^>xs^>y|->, то получится

Если взглянуть на табл. 9.3, то видно, что s^>хs^>у, действуя на |+> или |->, даст в точности то же, что получается, если просто подействовать оператором s^>zи умножить на — i. По­этому можно сказать, что операция s^>хs^>yсовпадает с операци­ей is^>z, и записать это утверждение в виде операторного урав­нения

Убедитесь, что это уравнение совпадает с одним из наших мат­ричных уравнений табл. 9.2. Итак, мы опять видим соответствие между матричной и операторной точкой зрения. Каждое из уравнений в. табл. 9.2 может поэтому рассматриваться и как

уравнение относительно операторов сигма. Можно проверить,

что они действительно следуют из табл. 9.3. Работая с этими

вещами, лучше не следить за тем, являются ли величины типа 0

или Н операторами или матрицами. Чем их ни считай, уравнения

>: выйдут одни и те же, так что табл. 9.2 можно при желании относить то к операторам сигма, то к матрицам сигма.

§ 3. Решение уравнений для двух состояний

Теперь можно писать наше уравнение двух состояний в раз-jличных видах, например:

или вот так:

Оба они означают одно и то же. Для частицы со спином >1/>2 в магнитном поле гамильтониан Н дается уравнением (9.8) или (9.13). I Если поле направлено по г, то, как мы уже много раз видели, решение заключается в том, что состояние |y>, каким бы оно ни было, прецессирует вокруг оси z (в точности, как если бы взять \ физическое тело и вращать его как целое вокруг оси z) с угловой

скоростью, вдвое большей, чем mB/h. Все это, конечно, относится и к магнитному полю, направленному под другим углом, ведь физика от системы координат не зависит. Если магнитное поле время от времени как-то сложно меняется, то такое положение пещей можно анализировать следующим образом. Пусть вначале спин был в направлении +z, а магнитное поле — в направле­нии х. Спин начал поворачиваться. Если выключить x-поле, поворот прекратится. Если теперь включить z-поле, спин начнет поворачиваться вокруг z и т. д. Значит, смотря по тому, как меняются поля во времени, вы можете представить себе, каким будет конечное состояние — по какой оси оно будет направлено. Затем можно отнести это состояние к первоначальным |+> и |-> по отношению к z, пользуясь проекционными формулами, полученными в гл. 8 (или в гл. 4). Если в конечном состоянии спин направлен по (q, j), то амплитуда того, что спин будет смотреть вверх, равна

, а амплитуда того, что спин будет смотреть вниз, равна