8a. Квантовая механика I | страница 31
§ 6. Гамильтониан частицы со спином >1/>2 в магнитном поле
Обратимся теперь еще к одной системе с двумя состояниями. На этот раз нашим объектом будет частица со спином >1/>2. Кое-что из того, что мы намерены сказать, затрагивалось уже в предыдущих главах, но повторение поможет нам немного прояснить кое-какие темные места. Покоящийся электрон мы можем считать тоже системой с двумя состояниями. Хотя в этом параграфе мы будем толковать об «электроне», но то, что мы выясним, будет справедливо по отношению ко всякой частице со спином >1/>2.
Предположим, что в качестве наших базисных состояний |1>и |2>мы выбрали состояния, в которых z-компонента спина электрона равна либо +h/2, либо -h/2. Эти состояния, конечно, те же самые состояния (+) и (-), с которыми мы встречались в прежних главах. Чтобы согласовать эти и прежние обозначения, спиновое состояние 1 у мы будем отмечать «плюсом», а спиновое состояние | 2 у — «минусом», причем «плюс» и «минус» относятся к моменту количества движения в направлении z.
Всякое мыслимое состояние |y>электрона можно описать уравнением (8.1), задав амплитуду С>1того, что электрон находится в состоянии |1>, и амплитуду С>2 того, что он находится в состоянии 2у. Для этого нам понадобится гамильтониан нашей системы с двумя состояниями — электрона в магнитном поле. Начнем с частного случая магнитного поля в направлении z.
Пусть вектор В имеет только z-компоненту B>z. Из определения двух базисных состояний (что их спины параллельны и антипараллельны В) мы знаем, что они уже являются стационарными состояниями — состояниями с определенной энергией в магнитном поле. Состояние |1> соответствует энергии, равной — mВ>z, а состояние |2> — энергии +mB>z. В этом случае гамильтониан должен быть очень простым, поскольку на С>1 — амплитуду оказаться в состоянии |1> С>2 не влияет и наоборот:
В этом частном случае гамильтониан равен