8a. Квантовая механика I | страница 22



А теперь следует задать такой вопрос: не может ли быть, что и силы, действующие между другими частицами, имеют сходное происхождение? Что, к примеру, можно сказать о ядерной силе, действующей между нейтроном и протоном или между двумя протонами? Пытаясь объяснить природу ядерных сил, Юкава предположил, что сила, действующая между двумя нуклонами, вызывается сходным обменным эффектом, только в этом слу­чае из-за виртуального обмена не электроном, а какой-то но­вой частицей, которую он назвал «мезон». Сегодня мы бы отож­дествили мезон Юкавы с p-мезоном (или «пионом»), возникаю­щим в высокоэнергетических столкновениях протонов или других частиц.

Посмотрим для примера, какого рода силы возникнут от того, что протон и нейтрон обменяются положительным пио­ном (p>+), имеющим массу m>p. Как атом водорода Н>0 может, от­казавшись от электрона е>-, превратиться в протон р>+

Н>0® р>+ + е>-, (8.12)

точно так же протон р>+ может перейти в нейтрон n>0, отказав­шись от p>+-мезона:

р>+®n>0+p>+ . (8.13)

Значит, если у нас есть протон (в точке а) и нейтрон (в точке b), разделенные расстоянием R, то протон может стать нейтроном, испуская p>+-мезон, который затем поглощается нейтроном в точке b, обращая его в протон. И имеется энергия взаимодей­ствия системы из двух нуклонов и одного пиона, зависящая от амплитуды А пионного обмена, как это было с электрон­ным обменом в ионе Н>+>2.

В процессе (8.12) энергия атома Н>0 (если вычислять ее нерелятивистски, опуская энергию поля электрона W>H) мень­ше энергии протона на величину mc>2, так что кинетическая энергия электрона отрицательна — или импульс мнимый [см. уравнение (8.9)]. В ядерном процессе (8.13) массы протона и нейтрона почти равны, так что полная энергия p>+-мезона ока­жется равной нулю. Соотношение между полной энергией Е и импульсом р пиона с массой m>pтаково:

E>2=р>2с>2+m>2>pc>4.

раз Е равно нулю (или по крайней мере пренебрежимо мало

по сравнению с m>p), то импульс опять выходит мнимый:

p=im>pc.

Повторяя знакомые нам уже рассуждения, с помощью ко­торых мы вычисляли амплитуду того, что связанный электрон проникнет через барьер в пространстве между двумя протонами, мы получаем для ядерного случая амплитуду обмена А, кото­рая — при больших R — будет вести себя как

Энергия взаимодействия пропорциональна А и, значит, ме­няется таким же образом. Мы получаем изменение энергии в форме так называемого потенциала Юкавы между двумя нук­лонами. Кстати, ту же формулу мы получили раньше прямо из дифференциального уравнения для движения пиона в пустом пространстве [см. гл. 28 (вып. 6), уравнение (28.18)].