Логика для всех. От пиратов до мудрецов | страница 42



(3) никто, кроме мордасиков, не может быть некузявым?

Задача 8.9. Объект охраняют пятеро часовых: А, Б, В, Г и Д. При этом справедливы следующие утверждения:

1) Если А спит, то и Б спит.

2) Хотя бы один из Г и Д спит.

3) Ровно один из Б и В спит.

4) В спит тогда и только тогда, когда спит Г.

5) Если Д спит, то А и Г тоже спят.

Перечислите всех спящих часовых.

Задача 8.10! Трех братьев пригласили на день рождения. Всего ожидалось 17 человек. «Вот бы мальчиков было больше, чем девочек», – захотел первый. «Вот бы при любой рассадке по кругу нашлось два мальчика рядом», – захотел второй. «Вот бы при любой рассадке по кругу нашелся гость, сидящий между двумя мальчиками», – захотел третий. Докажите, что все трое хотят одного и того же.

Указание. Докажите равносильность трех утверждений по кругу: 1 ⇒ 2 ⇒ 3 ⇒ 1.

Задача 8.11*. У профессора есть n утверждений А>2,…, А>n. О том, что все эти утверждения равносильны, знает только он. Профессор по очереди дает ученикам для доказательства такие теоремы: A>iA>j. Нельзя давать теорему, если она следует из ранее доказанных. Какое наибольшее число теорем могут доказать ученики, если: 1) n = 3; 2) n = 4; 3) в общем случае?

Занятие 9

Метаголоволомки

Ничего не найдено, – опять говорил себе Пьер, – ничего не придумано. Знать мы можем только то, что ничего не знаем. И это высшая степень человеческой премудрости.

Лев Толстой. «Война и мир»

В большинстве задач для школьников требуется найти ответ на вопрос, пользуясь данными задачи. В современных задачах теории информации ставится вопрос о вопросе: возможно ли по имеющейся информации ответить на данный вопрос?

С такой постановкой задачи мы встречаемся при определении минимального количества взвешиваний (вопросов), необходимых для нахождения фальшивой монеты (задуманного числа). Интерес в таких задачах обычно представляет конструктивная часть, а для доказательства минимальности найденного числа взвешиваний достаточно сравнить количество возможных вариантов ответа (монет, пар монет и т. п.) с количеством информации, полученной в результате определенного числа взвешиваний. Задачам на взвешивание посвящен отдельный выпуск нашей серии.

Основу же нашего занятия составляют метаголоволомки, т. е. головоломки о головоломках. В их условии сообщается, что некто по имеющейся информации может или не может установить истину. Совсем простая задача 9.1 демонстрирует, насколько информативным может быть факт неоднозначности ответа. В задаче следующего уровня 9.2 количество информации постепенно увеличивается, и ранее неотличимые ситуации становятся отличимыми.