Логика для всех. От пиратов до мудрецов | страница 39




Рис. 17


Заметим, что в рассмотренном выше примере все натуральные числа находятся в закрашенной серым области истинности высказывания А⇔Б. Это и означает, что оно истинно для всех натуральных чисел.

Задача 8.1.1) Известно, что высказывание А ⇔ Б истинно. Что можно сказать об истинности высказываний А ⇒ Б и Б ⇒ А?

2) Известно, что высказывание А ⇒ Б истинно. Можно ли что-то сказать об истинности высказывания А ⇔ Б?

3) Известно, что высказывание А ⇒ Б ложно. Можно ли что-то сказать об истинности высказывания А ⇔ Б?

Приведите для каждого случая примеры подходящих высказываний.

Ответ. 1) Оба высказывания истинны; 2) нет, высказывание А ⇔ Б может быть как истинным (в случаях, если А и Б одновременно истинны или одновременно ложны), так и ложным (в случае, если А ложно, а Б истинно); 3) да, высказывание А Б ложно, поскольку А истинно, а Б ложно.

Решение. Ответить на все три вопроса можно разными способами.

Первый способ: посмотрим на таблицы истинности для А ⇒ Б, Б^Аи А<^Б. Для удобства приведем общую таблицу. 1) А⇔ Б истинно для первой и четвертой строк, для этих строк и А ⇒ Б и Б ⇒ А оба истинны. 2) и 3) решаются аналогично.



Второй способ: посмотрим на иллюстрации высказываний А ⇒ Б, Б ⇒ АиА⇔Бс помощью кругов Эйлера.

1) Область истинности высказывания А⇔Б входит целиком в области истинности высказываний А ⇒ Б и Б ⇒ А.

2) Область истинности высказывания А ⇒ Б частично входит в область истинности высказывания А ⇔ Б, а частично находится за ее пределами. 3) В той области, где высказывание А ⇒ Б ложно, высказывание А ⇔ Б тоже ложно.

Третий способ пригоден только для пункта 2 и опирается на приведение конкретных примеров высказываний (например, из задач 5.2 (п. 1) и 5.2 (п. 2)). А вот то, что мы не можем подобрать всевозможных подходящих примеров в пунктах 1 и 3, еще не доказывает, что таких примеров и вовсе нет.

Задача 8.2. Бабушка печет пирог в те и только те дни, когда ждет гостей.

1) Бабушка печет пирог. Можно ли утверждать, что она сегодня ждет гостей?

2) Бабушка не печет пирог. Можно ли утверждать, что сегодня она не ждет гостей?

Ответ. 1) Да; 2) да.

Решение. Рассмотрим два высказывания. А: «Бабушка сегодня печет пирог», Б: «Бабушка сегодня ждет гостей». Тогда условие означает А⇔Б. В предыдущей задаче получено, что тогда истинно и А ⇒ Б, откуда ясен ответ в пункте 1. Кроме того, истинно и Б ⇒ А. А значит, и «не А» ⇒ «не Б», что мы и используем для доказательства от противного в пункте 2.