Учение логики о доказательстве и опровержении | страница 27
Связь оснований, ведущая к усмотрению истинности доказываемого тезиса,— не единственная. А так как связь эта не дана вместе с самими основаниями, но ещё должна быть открыта, выяснена, найдена, то доказательство есть творческая задача науки, которая творческими же средствами и решается.
В ряде частных случаев задача доказательства оказывается настолько сложной, что разрешение её требует от учёных огромных усилий на протяжении целых десятилетий или даже столетий. До сих пор не найдено доказательство теоремы Ферма о том, что уравнение x>n = y>n+z>n не может иметь решений для всех целых значений n больших дЕух. В течение почти двух с половиной тысячелетий оставалось недоказанным существование атома, пока успехи новейшей экспериментальной и теоретической физики не принесли, наконец, это доказательство. Гениальная догадка Джордано Бруно о существовании планет, обращающихся вокруг других звёзд, получила доказательное подтверждение только в последние десятилетия. Во всех этих случаях учёным пришлось приложить немало усилий для доказательства того, что могло быть доказано лишь при определённых условиях развития наблюдения, эксперимента и теоретического анализа.
С другой стороны, там, где задача доказательства успешно разрешалась, пути и средства её разрешения у разных учёных были неодинаковы. Уже античная математика знала не одно единственное доказательство теоремы Пифагора, а целый ряд таких доказательств. И это типично для доказательства. Доказываемый тезис — один, логические законы мышления — одни, но способы, ведущие к признанию истинности тезиса, могут быть разные. Способы эти определяются: 1) основаниями, из которых выводится тезис, 2) связью между основаниями и тезисом. Связь эта не видна из оснований, отдельно взятых. Она находится посредством рассмотрения отношений между доказываемым тезисом и тем, что уже ранее было доказано.
Но так как от доказываемого тезиса к уже доказанным положениям можно перейти не одним единственным способом, доказательство способно к развитию и совершенствованию. От примитивных способов доказательства, опиравшихся на неточные, приблизительные и потому часто ошибочные наглядные представления, до современных доказательств, опирающихся на точно определённые понятия, на не зависящие одна от другой, свободные от противоречий, достаточные в своём числе аксиомы, а также на чрезвычайно строго доказанные теоремы, практика доказательства прошла большой путь уточнения и совершенствования. Соответственным образом изменилась, уточнилась и логическая теория доказательства.