Учение логики о доказательстве и опровержении | страница 19



Небезусловная очевидность постулата Евклида и отсутствие противоречий в системе теорем, доказываемых на основе постулата, противоречащего постулату о параллельных, даёт возможность поставить вопрос, каков будет результат, если вместо постулата Евклида в число оснований геометрии будет принят другой — тоже не безусловно очевидный — постулат. Согласно последнему, получившему название постулата Лобачевского, через данную точку С, лежащую вне данной прямой АВ, можно провести в одной с ней плоскости не одну единственную не пересекающуюся с прямой АВ прямую, как это утверждает постулат Евклида, а целый пучок прямых, заключающийся между двумя прямыми KL и MN, проходящими через данную точку (см. рис.1) и называемыми параллельными относительно АВ[20].

Исследования Лобачевского показали, что замена постулата Евклида постулатом Лобачевского приводит к выявлению новой системы геометрии, получившей название геометрии Лобачевского и оказавшейся одним из видов так называемой неевклидовой геометрии. В геометрии Лобачевского сохраняются все определения, аксиомы и постулаты геометрии Евклида, кроме 5-го постулата, или 11-й аксиомы. Последний заменяется постулатом Лобачевского. Доказательства теорем развиваются безупречно строго в полную систему геометрии, которая нигде не приводит ни к каким противоречиям. По содержанию теоремы геометрии Лобачевского делятся на два класса: во-первых, теоремы, доказываемые без помощи постулата Лобачевского (так называемая абсолютная геометрия), и, во-вторых, теоремы, доказываемые с помощью этого постулата. Первые ничем не отличаются от соответствующих теорем Евклида. Вторые отличаются, а именно: разность в численных результатах этих теорем сравнительно с результатами теорем Евклида тем больше, чем больше масштаб соответствующего геометрического объекта. Например, по Евклиду, сумма внутренних углов плоского треугольника равна двум прямым. По Лобачевскому, эта сумма меньше двух прямых. При этом разность эта тем больше, чем больше данный треугольник.

Открытие Лобачевским неевклидовой геометрии означало эпоху не только в развитии математики, но также и в развитии логического учения об аксиомах как об основаниях доказательства. Это открытие Лобачевского нанесло смертельный удар идеалистическим теориям рационалистов и кантианцев. Логики этого направления сущность аксиом полагали в их интуитивной, т. е. непосредственной очевидности, в их априорной, т. е. будто бы предшествующей всякому опыту, безусловной и необходимой наглядности. Так как, по Канту, истины математики имеют, во-первых, всеобщий и необходимый характер, во-вторых, основываются на априорных формах чувственной интуиции, то ни о какой неевклидовой геометрии, разумеется, не может быть и речи.