Вселенная работает как часы. Лаплас. Небесная механика | страница 32



Де Мопертюи, опирающийся на глобус, в знак уважения к Ньютону.

Чертеж из «Первоначал философии» Декарта, демонстрирующий идею вихревых потоков.

Диаграмма из «Математических начал натуральной философии», в которой Ньютон объясняет, каким образом Солнце воздействует на движение Луны вокруг Земли.


Математики XIX века возьмут на себя обязанность доказать, что, к сожалению, большинство рядов небесной механики, открытых математиками предыдущего столетия, не сходятся (их результат дает бесконечное число). Таким образом, они не дали приемлемых решений или сколько-нибудь точных приблизительных значений. Лаплас сохранил только А, но оставшиеся члены В + С, хоть и были небольшими, оказывали свое влияние. С течением времени — в долгосрочном периоде — они могли стать причиной значительных изменений. Также в этом бесконечном ряду внезапно мог появиться новый значительный член, что противоречило бы тенденции следования первых членов. В частности, в уравнении системы Солнце — Юпитер — Сатурн (задача трех тел) Лаплас пренебрег членами, которые считал бесконечными, но которые, вопреки его догадкам, могли вызвать дестабилизацию Солнечной системы. Несколькими годами позже он объяснил свой метод в работе «Изложение системы мира» (книга IV, глава II):


«Расчеты подтвердили эту догадку и показали, что, вообще, средние движения планет и их средние расстояния от Солнца неизменны, по крайней мере если пренебречь четвертыми степенями эксцентриситетов и наклонностей орбит и квадратами возмущающих масс, что более чем достаточно для современных надобностей астрономии».


Далее, в главе XVII, он добавил:


«Исключительная трудность проблем, относящихся к системе мира, заставляет прибегать к приближениям. Но всегда остается опасение, что величины, которыми пренебрегли, окажут заметное влияние на результаты».


И действительно, в 1856 году французский математик Урбен Леверье (1811-1877), известный своим открытием Нептуна, проверил расчеты Лапласа и доказал, что пренебрежение членами высшего порядка может вызвать значимые последствия, поэтому приближенные решения не могут быть использованы для доказательства стабильности Солнечной системы на период больший, чем сто лет.

И лишь в конце XIX — начале XX века один талантливый ученый пролил свет на проблемы небесной механики, оставшиеся нерешенными. Это Анри Пуанкаре — французский математик, которого часто называют последним универсалистом (его вклад является неотъемлемым для всех математических дисциплин). Он доказал, что результаты Лапласа были бы приемлемы, если бы использовалось приближение массы планет второго порядка, но не третьего. Значение этих членов, которые Лаплас счел несущественными, могло бы серьезно возрасти и вызвать дестабилизацию орбит планет. Иногда астроном предоставляет математику практические наблюдения, которые для последнего становятся источником бесконечного множества теоретических данных. Эти данные могут отражать влияние сил, которые сохраняют расстояние между звездами или, напротив, способствуют бесконечному движению некоторых небесных тел. Небольшие отклонения в начальном положении планет могут повлечь значительные изменения их конечного положения. Действительно, любое, даже самое малое возмущение периодического движения (которое соответствует эллипсу Кеплера) может с течением времени переродиться в нестабильную, то есть хаотичную траекторию (рисунок 3 на следующей странице).