Вселенная работает как часы. Лаплас. Небесная механика | страница 31



Ученый полагал, что решение проблемы трех тел не может быть найдено с помощью простой функции, а требует решения системы дифференциальных уравнений, то есть бесконечной суммы функций (которые зависят от таких орбитальных параметров, как эскцентриситет, наклонение орбиты, масса планеты). Эта система должна соответствовать условиям задачи и, кроме прочего, быть сходящейся для некоторых значений переменных. Лагранж уже нашел одно решение, но он не был уверен, что ряды сойдутся: если мы заменим переменные на их числовые значения, взятые из атмосферных данных, бесконечная сумма членов ряда станет конечным числом.

Поскольку условия не способствовали точным расчетам, Лаплас решил воспользоваться приблизительными значениями с усеченными рядами. В одном бесконечном ряду членов он сохранял только главные, а остальные опускал. Ученый думал получить разумные оценки поведения планет, изменяя лишь первые члены бесконечного ряда и полагая, что остальные члены не будут слишком сильно влиять на результат. Так он определил приблизительные решения для задачи трех тел и увидел, что хотя они и не полностью соответствуют действительности, эти мелкие отклонения несущественны. Он не ошибся.

Ряды, с которыми работал Лаплас, были рядами степеней, то есть бесконечными суммами функций, определенными с помощью последовательных степеней обратной массы Солнца. В первом члене появляется обратная величина массы, во втором — квадрат обратной величины солнечной массы, в третьем — куб и так далее. Учитывая соотношение солнечной массы с массами оставшихся планет и их спутников (отношение массы одной планеты к массе Солнца равно примерно 0,0001), Лаплас решил сократить этот ряд, используя только первый член и опуская члены начиная со степени 2. Он считал их несущественными: при возведении солнечной массы в квадрат частное становится порядка 0,00000001). Для наглядности, вместо того чтобы рассматривать А + В + С +..., он учитывал только А. Этот первый член позволял вывести приближение первого порядка.

Очевидно, что сумма первого и второго членов (А + В) была бы лучшим приближением, а сумма первых трех членов (А + В + С) — еще лучшим, но это потребовало бы погружения в крайне сложные вычисления. На самом деле если последовательные члены убывали, то приближение первого порядка (А) уже представляло собой достаточно точное значение суммы. Именно таким образом действовал французский математик: он использовал приближения первого порядка и не учитывал члены второго, третьего и последующих порядков.