Том 28. Математика жизни. Численные модели в биологии и экологии | страница 38





Аттрактор Лоренца.

* * *

гистическое отображение. Вместо дифференциального уравнения Ферхюльста у' r·y·(k — у) используется выражение у r·y>n·(k — у>n), которое называется уравнением в конечных разностях. Напомним, что последнее выражение мы использовали в предыдущей главе, говоря об изучении хаоса.

В уравнениях в конечных разностях n обычно обозначает время t. Теперь, что очень важно, время является дискретным, то есть принимает конкретный набор фиксированных значений 0, 1, 2, 3, …, t, как на циферблате цифровых часов. Обратите внимание, что при использовании логистического отображения в компьютерном моделировании мы ограничиваемся тем, что вычисляем одно и то же выражение для множества значений. Иными словами, после того как выбраны значения k, r и начальный размер популяции, к примеру, бактерий, у(0), остается лишь вычислить значения у(1), у(2), у(3) и т. д. Для этого используется выражение:

y(t + 1) = r*y(t)*(k — y(t)),

где * — оператор умножения, используемый в языках программирования. Математики обычно говорят, что для заданных начальных условий у(0) последовательность значений у(1), у(2), у(3) и т. д. является орбитой точки у(0). Если вы хотя бы немного знакомы с программированием (на любом языке), то сможете убедиться, что программа для вычисления орбиты точки сводится к следующему набору операций:

>‘начальные условия и параметры логистического отображения

>у(0): r: k

>‘максимальное время моделирования

>tmax

>‘уравнение в конечных разностях

>For t = 0 ТО tmax

>y(t + 1) = y(t + 1) = r*y(t)*(k — y(t))

>print t, y(+ 1)

>End

Отличие этого метода от использования дифференциальных уравнений состоит в том, что интегрирование заменяется итерированием. Иными словами, нам больше не требуется вычислять интегралы — вместо этого мы снова и снова повторяем одни и те же математические операции. Повторные вычисления позволяют определить отображение. Так, экологи определяют будущее состояние системы y(t + 1), к примеру озера или пастбища, на основе текущего состояния y(t). Если повторить эти действия снова и снова, можно предсказать изменения, которые произойдут в системе.

Что произойдет с предыдущей программой, если вместо логистического отображения использовать уравнение Ферхюльста? В этом случае потребуется уже не итерировать, а интегрировать, о чем мы рассказали в предыдущей главе.

Интегрирование дифференциального уравнения можно выполнить разными методами, которые используются не только в экологии, физиологии и фармакологии, но и в экономике, химии и многих других науках, включая политологию. Методы интегрирования дифференциальных уравнений с помощью компьютера называются численными методами интегрирования. Самый простой и популярный из них метод Эйлера, однако более точным является метод Рунге — Кутты четвертого порядка. Любой из этих методов позволяет найти приближенные значения