Том 28. Математика жизни. Численные модели в биологии и экологии | страница 36



(t +1) для каждого момента времени t.



Графики, соответствующие экспериментам с бактерией Escherichia coli. Слева направо: эксперимент № 2 (= 2,4), эксперимент № 3 (r = 3,0) и эксперимент № 4 (r = 3,6).


Выполним эксперимент № 1 со значением r = 0,4. Сначала определим численность бактерий по прошествии единицы времени: у(1) = 0,4·у(0)·(1 — у(0)), подставив значение у(0) = 0,7. Найдя у(1), определим численность бактерий по прошествии двух единиц времени у(2): у(2) = 0,4·у(1)·(1 — у(1)). Далее вычислим у(3), у(4) и т. д. вплоть до сколь угодно большого t. К примеру, изучим рост популяции вплоть до t = 100. В этот момент времени численность бактерий будет равна у(100).

Наконец, представим на графике число бактерий у(t) для каждого момента времени t. Заметим, что для данного начального значения численности бактерий у(0) и определенного значения параметра r с помощью компьютера можно получить значения численности бактерий в разные моменты времени, то есть у(0), у(1), у(2)…, у(100). Эта последовательность чисел называется орбитой. Зададимся вопросом: куда будет направлена эта орбита? Иными словами, каким будет окончательное значение численности популяции?

Чтобы ответить на этот вопрос, проведем все эксперименты согласно вышеописанному принципу, выполнив необходимые расчеты для соответствующих значений r.

В эксперименте № 1 бактерии вымрут: по прошествии определенного времени в сосуде не останется ни одной бактерии. Однако с математической точки зрения популяция достигнет равновесия — это происходит, когда численность популяции не меняется, то есть уровень ее изменения у', или, что аналогично, dy/dt, будет равен 0.

В нашем эксперименте численность популяции достигла так называемого точечного аттрактора у = 0, то есть популяция бактерий вымерла. Это одно из возможных состояний, к которому может прийти любая популяция. Аттрактор — не более чем точка или множество точек, к которым стремится или приближается динамическая система, в нашем эксперименте это орбита, образованная значениями численности бактерий. Равновесие означает, что система достигла аттрактора и находится в стабильном состоянии, так как dy/dt = 0. Значение у при этом совершенно неважно.



Точечный аттрактор.


Участь популяции бактерий в эксперименте № 2 будет не столь печальной. Эта популяция также достигнет точки равновесия, однако численность бактерий зафиксируется в точечном аттракторе у = 0,6. В эксперименте № 3 численность бактерий будет колебаться между определенным максимальным и минимальным значениями в зависимости от того, в какой момент времени