Том 28. Математика жизни. Численные модели в биологии и экологии | страница 14
Человек всегда испытывал потребность понимать, контролировать и предсказывать поведение всего сущего. Для этого ученые всех времен и народов создавали модели окружающего мира, то есть представления или абстракции некоторой системы или явления.
Модель обладает несколькими полезными свойствами. С одной стороны, она позволяет понять и объяснить то или иное явление — в качестве примера можно привести модель клеточного цикла или метаболизма глюкозы. С другой стороны, что особенно важно, она позволяет предсказать состояние или поведение изучаемой системы в будущем: это может быть прогнозирование климата или описание какой-либо гипотетической ситуации, например воздействия аварии на атомной электростанции на флору и фауну региона.
Также компьютерное моделирование позволяет ученым проверить те или иные гипотезы. К примеру, можно провести эксперимент, опровергающий гипотезу о происхождении жизни или позволяющий рассмотреть механизм эволюции конкретного вида. Модель может использоваться и для того, чтобы вдохновить, например, группу инженеров на поиски решения задачи. В любом случае построение моделей очень важно как в силу их практической ценности, так и из-за того, что моделирование — единственный способ, который позволяет постепенно выстроить картину окружающего мира.
В биологии, как и в других науках, наиболее полезны математические модели: они в абстрактной форме представляют систему или явление с использованием языка и формальных средств математики. К примеру, в модели клетки, сердца или экосистемы составные части объекта и взаимодействие между ними представлены математическими выражениями. Эти выражения связывают множество входных переменных I>1, I>2, …, I>n и выходную переменную О. Входные переменные обозначают величины, которые можно наблюдать (и измерить) в ходе эксперимента. Обычно одна из этих переменных — время, t. Она обозначает момент времени, в который были получены входные значения I>1(t), I>2(t), …, I>n(t). Как только эти значения определяются экспериментально или любым другим способом (например, на основе каких-либо теоретических предпосылок), они вводятся в модель. Используя математические выражения модели, ученый определяет значение выходной переменной O(t), которое отражает какое-либо свойство системы. Обычно этим свойством является состояние или поведение системы в определенный момент времени t.
В математических выражениях используются параметры. В отличие от входных и выходных переменных, они обозначают величины, которые нельзя наблюдать в ходе эксперимента напрямую, например уровень рождаемости, константа распада, скорость биохимической реакции и т. д. Как следствие, значения параметров устанавливаются в лаборатории или при полевых исследованиях.