Том 28. Математика жизни. Численные модели в биологии и экологии | страница 13
Нелинейные системы: их сложно изучить, так как не существует одного математического метода, описывающего их все, хотя их поведение и похоже. К примеру, если мы подтолкнем маятник, он будет совершать колебания до тех пор, пока не остановится. Похожие ситуации наблюдаются в иммунной системе и в долговременной памяти человека.
Любопытная особенность нелинейных систем состоит в том, что их поведение может быть хаотическим. Хаотические системы — это системы, обладающие сложным поведением, которое непросто спрогнозировать, так как они одновременно стремятся к равновесному состоянию и отдаляются от него. К примеру, атмосфера и климат, тектонические плиты, эпилепсия, популяции и многие другие явления, о которых мы расскажем в этой книге, представляют собой хаотические системы и описываются уравнением Ферхюльста. Изучение хаоса стало популярным в биологии благодаря фракталам — их характерным примером в природе является ветвление растений.
В середине 1980-х ученые объединили нелинейные, хаотические и диссипативные системы в одно целое — сложные системы, изучению которых в биологии уделяется наибольшее внимание. К таким системам относятся, например, муравейники, мозг, иммунная система, клетка, морфогенез или экосистемы. В некоторых случаях сложные системы изучаются с применением стандартных методов математической биологии. Однако некоторые системы настолько сложны, что изучить их можно только альтернативными компьютерными методами, позволяющими найти лишь приближенные решения. Такие методы называются эвристическими. К примеру, в настоящее время метод клеточных автоматов является одной из альтернатив моделированию сложных систем, для которых неизвестны описывающие их дифференциальные уравнения. Классический пример клеточного автомата — колония муравьев. В некоторых случаях, несмотря на то что дифференциальные уравнения, описывающие систему, известны (например, в случае с пятнами на коже позвоночных), поведение системы быстрее и удобнее смоделировать с помощью клеточных автоматов. Кроме того, клеточные автоматы позволяют наглядно изобразить узоры, к примеру полоски зебры, что при использовании дифференциальных уравнений невозможно. Еще одним примером служит клеточный автомат Ва-Top, описывающий модель «хищник — жертва» Лотки — Вольтерры.
В этой главе мы коротко обрисовали основные этапы развития математической биологии. Обратите внимание, что не только зарождение, но и последующее развитие этой дисциплины неизменно находилось под большим влиянием преобладавших на тот момент физических интерпретаций жизни. Более того, математическая биология — это дисциплина, которая способствовала тщательному анализу биологических явлений и экспериментальных данных. Сегодня одним из самых важных достижений математической биологии являются математические модели, позволяющие проводить с помощью компьютера сложные эксперименты.