Том 26. Мечта об идеальной карте. Картография и математика | страница 3



, площадь Африки — 29800000 км>2.

Следовательно, контуры стран на карте также очень сильно искажены. Наконец, зададимся вопросом: сохраняются ли на картах румбы, направления и углы? Углы между меридианами и параллелями равны 90°, как и на нашей карте. Но если мы посмотрим на карту на следующей странице, то увидим, что это не так — углы не сохраняются. Эта карта выполнена в одной из классических проекций, которая называется ортографической, и показывает Землю так, как будто мы смотрим на нее из бесконечно удаленной точки.

Следовательно, карты не обладают ни одним из ожидаемых свойств: они не сохраняют расстояния, кратчайшие пути, площади и углы. Может быть, нам не хватает каких-то знаний? Так, существует целое множество картографических проекций: кроме упомянутых проекции Меркатора и ортографической проекции, используются равновеликая цилиндрическая проекция Ламберта, равновеликая коническая проекция Альберса, проекция Моллвейде, ортографическая проекция Галла — Петерса, проекция Eckert IV, центральная, стереографическая, равноугольная коническая проекция Ламберта, биполярная косая равноугольная коническая проекция, цилиндрическая равнопромежуточная, азимутальная равнопромежуточная, тройная проекция Винкеля, проекция Ван дер Гринтена, UTM, проекция Бонне, проекции Eckert I–IV, гомолосинусоидальная проекция Гуда, Хаммера, Вернера, Бризмейстера, равновеликая цилиндрическая проекция Бермана, проекция Робинсона и многие другие. Картограф Джон Снайдер в своей книге «Как Земля стала плоской» (Flattening the Earth) описывает свыше 300 картографических проекций. Возникает вопрос: почему существует столько карт? Насколько они точны? Какая — точнее всех? Как нарисовать точную карту Земли? И наконец, какую карту можно считать точной?



В этой книге мы постараемся ответить на эти вопросы, а также подробно рассказать о картах, которые мы видим каждый день. При изучении карт не обойтись без дифференциальной геометрии, которая входит в курсы картографии для таких специальностей, как география, судовождение, океанология и другие. Однако мы стремимся избежать специальных терминов и рассказать о картах с интуитивно понятной, «геометрической» точки зрения, поэтому будем использовать только методы классической геометрии (в частности, геометрии Евклида и тригонометрии). Приближенные равенства, которые мы будем приводить во многих рассуждениях, исчезают при переходе к пределу, однако в этом случае мы применим лишь самые основы дифференциального и интегрального исчисления, относящиеся к дифференциальной геометрии.