Том 26. Мечта об идеальной карте. Картография и математика | страница 26





Натянутая веревка соответствует кратчайшему пути между двумя точками.


На интуитивном уровне можно сформулировать следующее доказательство. Допустим, даны две точки на сфере, и мы хотим найти кривую, которая определяет кратчайший путь между ними. Кажется логичным предположить, что мы можем ограничиться рассмотрением окружностей сферы, которые проходят через эти точки и образуются сечением сферы плоскостями, проходящими через две данные точки. Кроме того, в силу свойств симметрии, четко видно, что дуга окружности, полученной сечением сферы плоскостью, проходящей через центр сферы, соответствует кратчайшему пути между точками, что показано на предыдущем рисунке. В итоге большие круги являются геодезическими линиями сферы, или кривыми, указывающими наименьшее расстояние.



Дуга большого круга, заключенная между между двумя точками, имеет наименьшую длину среди всех дуг окружностей, соединяющих данные точки.

* * *

ГЕОДЕЗИЧЕСКИЕ КУПОЛА

Одно из самых впечатляющих сооружений сферической формы, созданных в XX веке, — это геодезические купола Ричарда Бакминстера Фуллера (1895–1983). Мы могли бы многое сказать об этом гениальном изобретателе, архитекторе, инженере, математике, поэте и космологе, провидце, который опередил свое время и смог поставить науку и технику на службу обществу. Величайшим его творением, несомненно, являются геодезические купола.



Американский павильон на Всемирной выставке 1967 года в Монреале, построенный по проекту Ричарда Бакминстера Фуллера. Позднее в павильоне разместился музей воды и окружающей среды

>(фотография: Филипп Хайнсторфер).


Геодезический купол — это сферическая структура, образованная сеткой больших кругов (геодезических линий). Треугольники, из которых состоит сетка, придают структуре жесткость. Для построения классического геодезического купола рассматривается икосаэдр, вписанный в сферу, как показано на иллюстрации. Затем каждая грань икосаэдра делится на треугольники, которые проецируются на сферу, образуя сетку геодезических линий.

Преимущества геодезического купола следующие.

1. Он покрывает обширное пространство и не требует поддерживающих конструкций в середине.

2. Для геодезического купола характерно оптимальное соотношение объема к площади поверхности, иными словами, он покрывает пространство максимального объема при наименьшей площади поверхности.

3. Пространство внутри купола нетрудно обогревать, так как потери тепла зависят от соотношения между объемом и площадью поверхности, которое является оптимальным.