Том 26. Мечта об идеальной карте. Картография и математика | страница 18



) частей секунды).

В разное время метр определялся по-разному, однако началом его использования в качестве универсальной единицы длины мы обязаны Великой французской революции. В 1790 году для унификации единиц мер была создана Комиссия по мерам и весам. Было поставлено два условия: единицы измерения должны быть универсальными, то есть применяться повсеместно, и они не должны быть выбраны произвольно. В соответствии с этими условиями новая единица длины, метр, была определена как одна десятимиллионная часть расстояния от Северного полюса до экватора, измеренного вдоль меридиана. В самый разгар революционных потрясений было организовано две экспедиции для измерения длины парижского меридиана между Дюнкерком и Барселоной. Экспедицию, которая направилась в Дюнкерк, возглавил Деламбр, барселонскую экспедицию — Мешен. В ходе измерений с помощью триангуляции, которые длились 7 лет, ученые пережили всевозможные тяготы и многочисленные приключения. Этим событиям посвящен очень интересный роман Дэниса Гейджа «Измерение мира» («The Measure of the World»).

Глава 3

Меридианы, параллели и большие круги

По высоте Солнца и положению Полярной звезды можно было определить широту; с помощью карты и компаса, определив скорость на глаз и измерив время (обратите внимание: с помощью песочных часов, точность которых зависела от юнги, переворачивавшего их, а он неизменно хотел лечь спать пораньше, поэтому часы всегда спешили), можно было определить примерную скорость корабля — настолько неточную, что она больше напоминала выдумку.

Хулио Гильен Тато, «Искусство мореплавания» (1935)


В нашем рассказе о картографии не обойтись без географических координат — широты и долготы, которые позволяют однозначно определить положение любой точки земной поверхности. Познакомьтесь с координатной сеткой, образованной двумя почтенными семействами сферических кривых — параллелями и меридианами, которые являются кривыми постоянной широты и долготы. Мы настолько привыкли к тому, что кратчайшим путем между двумя точками является прямая, что сложно представить, что на поверхности сферы это не так. Однако это действительно не так, хотя бы потому, что на поверхности сферы нельзя провести прямую. Следующий вопрос кажется очевидным: какие кривые играют на сфере ту же роль, что и прямые на плоскости? Точнее, каков кратчайший путь между двумя точками сферической поверхности? Ответом на этот вопрос будет еще одно интересное семейство сферических кривых — большие круги.