Том 13. Абсолютная точность и другие иллюзии. Секреты статистики | страница 5
Эксперименты, проведенные Луи Пастером в период с 1860 по 1864 год, сыграли ключевую роль в формировании теории патогенов и позволили дать теоретическое объяснение наблюдениям Сноу постфактум. В 1885 году немецкий ученый Роберт Кох установил, что возбудителем холеры является бактерия Vibrio cholerae, и уже в конце века системы водоснабжения большей части крупных европейских городов были заменены. Призрак холеры перестал угрожать половине мира.
Описать подозреваемого в преступлении так, чтобы другие смогли гарантированно опознать его, — непростая задача, если только у подозреваемого нет какой-то отличительной черты. Однако эксперты полиции знают, на что следует обращать внимание и какие эпитеты нужно использовать при описании преступника, чтобы другой человек мог себе его представить. Они также знают, как нужно составить фоторобот преступника, чтобы его было легче опознать.
Чем-то подобным занимается и статистика. Чтобы обобщить обширное множество данных, рассчитывается несколько показателей (их может быть, например, пять или шесть), которые содержат больше всего информации и помогают получить достаточно точное представление обо всех данных в целом. Эти показатели обычно делятся на три группы: показатели центра распределения, показатели вариации и квантили. В этом разделе мы расскажем о показателях первой группы, которые указывают, в окрестности каких значений располагаются данные.
Среднее арифметическое
Мы все рассчитывали свой средний балл, когда учились в школе или институте. Например, баллы выставляются по шкале от 0 до 10, итоговый балл рассчитывается как средний балл трех промежуточных экзаменов, а пороговая оценка равна 5. Оценки 3, 2 и 6 на промежуточных экзаменах означают, что вы не сдали экзамен; оценки 4, 4 и 7 означают успешную сдачу (а как быть, если вы получили 4, 4,3 и 6,3?).
Среднее арифметическое — это один из наиболее распространенных показателей центра распределения. Эта величина используется весьма широко благодаря своим особым свойствам и простоте расчетов. Она также демонстрирует нетривиальные свойства при некоторых расчетах. Попробуем, к примеру, найти среднее арифметическое средних арифметических. Среднее арифметическое (3, 4, 3) равно 4, среднее арифметическое (4, 6) равно 5, но среднее арифметическое всех этих чисел равно 4,4, а не среднему значению средних арифметических (4 + 5)/2 = 4,5. Как правило, если дано множество из