Том 13. Абсолютная точность и другие иллюзии. Секреты статистики | страница 39
Если мы будем использовать те же числа, что и в нашем примере, то увидим, что в 85 % случаев число помеченных рыб во второй выборке будет варьироваться от 2 до 5. Используя выведенную нами формулу, получим, что число рыб в озере лежит в интервале от 45 до 112. В 15 % случаев число рыб будет лежать вне этого интервала.
Распределение числа помеченных рыб в повторной выборке (моделирование было выполнено 10 000 раз).
Оценка числа рыб бывает чаще избыточной, чем недостаточной. Среднее оценочное значение 82 также больше фактического числа рыб в озере. В этом случае говорят, что оценка является смещенной и не отражает истинного значения оцениваемой величины.
Оценка существенно улучшится, если внести в формулу небольшие изменения. Проблема в том, что объяснить, почему следует внести именно эти поправки, достаточно сложно.
Выполнив расчеты с помощью этой формулы, получим, что если в повторной выборке встретилось 2 помеченных рыбы, то оценка общего числа равна 85, если число помеченных рыб равно 5, то оценка общего числа равна 42. Следовательно, в 85 % случаев оценка численности рыб будет лежать в интервале от 42 до 85. Кроме того, в 27 % случаев число помеченных рыб будет равно 3, что соответствует числу в 64 рыбы, и это очень близко к истинному значению. Эта оценка является несмещенной: если мы повторим вышеописанные действия множество раз, то средняя оценка будет совпадать с истинным значением.
Также можно ввести поправочные коэффициенты, если вы считаете, что вероятность вылова разных рыб отличается, метка влияет на выживаемость рыб или метка может стираться. Эта тема очень подробно изучена и описана в книгах по экологии. Также это прекрасный пример того, как статистика может решать задачи, которые кажутся крайне сложными или вовсе невозможными.
Такси
Подсчитать число такси в городе намного проще, чем количество рыб в озере. Можно начать с поиска этой информации в Интернете. Так, например, на сайте администрации крупного города может быть указано, что общее число выданных лицензий равно 10481. Каждая лицензия соответствует одному автомобилю. Задача решена.
Однако если эта информация недоступна в Интернете, можно воспользоваться методами статистики. Номер лицензии написан на каждом автомобиле такси. Максимально возможным номером является число выданных лицензий. Когда мы покупаем новый автомобиль, нам выдается новый номер (следующий за последним выданным), а номер старого автомобиля уничтожается.