Том 13. Абсолютная точность и другие иллюзии. Секреты статистики | страница 36
Выигрышная комбинация выпадает дважды
Рассмотрим еще один удивительный пример из теории вероятностей. Один человек всю взрослую жизнь (допустим, 30 лет) играет в лотерею. Если каждую неделю разыгрывается два тиража, какова вероятность того, что за этот период одна и та же выигрышная комбинация выпадет больше одного раза?
Существует множество различных лотерей, но, как правило, выбираются 6 чисел от 1 до 49. Число возможных комбинаций в тираже равно 13 983 816 (это число сочетаний из 49 по 6), и лишь одна является выигрышной.
Допустим, что этот человек играет 100 раз в год, 3000 раз на протяжении всей жизни. Задача аналогична задаче о днях рождения, только в этом случае в «году» 13983816 дней, а группа состоит из 3000 человек, каждый из которых родился в один из этих дней. Какова вероятность того, что два человека или более родились в один и тот же день? Применив формулы из предыдущей задачи (здесь нам не обойтись без электронных таблиц), получим, что искомая вероятность равна 59 %. Поэтому неудивительно, если за этот период одна и та же выигрышная комбинация действительно выпадет дважды.
Последовательные числа в билетах национальной лотереи
В завершение этого раздела попробуем ответить на вопрос, которым вы наверняка задавались. Какова вероятность того, что в выигрышной комбинации лотереи выпадут два последовательных числа?
Она намного выше, чем может показаться, и равна 49,5 %. Вычислить точное значение с помощью формул комбинаторики не так-то просто, но порядок этой величины можно оценить с помощью Excel.
Для этого нужно выполнить следующие действия.
1. Расположить числа от 1 до 49 в столбце А.
2. Поместить случайные числа в столбец В.
3. Упорядочить столбец В, после чего порядок чисел в столбце А также изменится.
4. Числа в столбце А упорядочены случайным образом. Скопируйте первые шесть значений в столбец С. Эти числа составят выигрышную комбинацию.
5. В столбец D поместите 15 абсолютных значений разницы между числами выигрышной комбинации. В столбце F на следующем рисунке представлены формулы, по которым рассчитываются значения в столбце D.
6. В первую строчку столбца Е поместите наименьшее значение из столбца D. Если это значение равно 1, это означает, что выигрышная комбинация содержит последовательные числа.
Выполнив эти действия, измените порядок чисел в столбце В, что снова повлечет изменение порядка чисел в столбце А. Результатом будет новая выигрышная комбинация, и все остальные числа пересчитаются автоматически.