Том 9. Загадка Ферма. Трехвековой вызов математике | страница 43



), цель которого — поиск простых чисел Мерсенна. Участники проекта загружают на свои компьютеры программу, написанную Джорджем Вольтманом.

Результат коллективных усилий был объявлен 23 августа 2008 года — было найдено самое большое на тот момент простое число Мерсенна, 2>43112609  — 1. Ему соответствует самое большое из известных совершенных чисел, 2>43112608·(2>43112609 — 1), содержащее 25956376 цифр! 12 июня 2009 года было найдено еще одно простое число Мерсенна, на этот раз несколько меньшее: 2>42643801 — 1. Ему соответствовало сорок шестое совершенное число, равное 2>42643800·(2>42643801 — 1), состоящее из 25674128 цифр! И хотя они встречаются все реже, и каждое следующее намного больше предыдущего, никто не знает, действительно ли их на самом деле бесконечное множество. Участники проекта GIMPS продолжают поиски.


* * *

ПРОСТЫЕ ЧИСЛА ФЕРМА И ПОСЛЕДУЮЩИЕ ОТКРЫТИЯ

В 1650 году Ферма представил математическому сообществу одну из самых знаменитых задач в истории: нужно было показать, что все числа вида 

являются простыми. Все указывало на то, что предположение Ферма было верным. Для n = 0 получим F>0 = 3 — простое число. Для n = 1 получим F>1 = 5 — тоже простое число. F>2 = 17, F>3 = 257 и F>4 = 65 537 — все это простые числа. Лишь в 1732 году Эйлер показал, что F>5 = 4294967297 = 641·6700417, следовательно, оно не является простым. Затем пришлось дождаться 1880 года, когда Ландри разложил на множители F>6 = 274177·67280421310721 настоящий подвиг для эпохи, когда все вычисления производились вручную. В 1975 году Моррисон и Бриллхарт сделали еще один шаг вперед, разложив на множители F>7 = 340282366920938463463374607431768211457 = 59649589127497217·5704689200685129054721, на этот раз уже с помощью компьютера. До сегодняшнего дня не найдено больше ни одного простого числа Ферма, но также не доказано, что других таких чисел не существует. Однако разложить подобные числа на простые множители — задача, достойная титанов. Зачем нам знать, являются простыми числа подобного вида или нет? Один из ответов дал Гаусс, доказав, что правильный многоугольник можно вписать в окружность с помощью циркуля и линейки только тогда, когда разложение числа его сторон на простые множители содержит только двойки и разные простые числа Ферма.

Например, с помощью циркуля и линейки в окружность можно вписать треугольник (3 стороны), квадрат (4 = 2>2 стороны), пятиугольник (5 сторон), шестиугольник (6 = 2·3 сторон), восьмиугольник (8 = 2