Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики | страница 48
Хотя распределение скоростей, которое мы видели выше, было предложено Джеймсом Клерком Максвеллом (1831–1879), именно Больцман подвел под его идеи теоретическое обоснование, поэтому его называют распределением Максвелла — Больцмана. В его математическом выражении используется экспоненциальная функция у основанная на числе Эйлера, е. Число е — это иррациональное число, приблизительно равное 2,71828. Вычисляется оно сложением следующего бесконечного ряда:
Точно так же как 2>3 — это 2·2·2, е можно возвести в любую степень: е>3 = = е·е·е. Распределение Максвелла — Больцмана выражается с помощью экспоненциальной функции следующим образом:
где m — масса молекул газа, k — постоянная Больцмана, Т — температура газа и v — скорость молекулы. Экспонента быстро растет при росте v — поскольку 2>10 намного больше, чем 2>2. Это означает, что вероятность найти молекулы с очень высокими скоростями должна быть очень маленькой. С другой стороны, когда v равна нулю, вероятность равна ему же, и это означает, что невозможно найти молекулу, которая находилась бы в состоянии покоя.
* * *
ЧИСЛО ЭЙЛЕРА
Число Эйлера — одно из самых важных в математике. Кроме того, что это иррациональное число, у него есть ряд поистине волшебных свойств. Возможно, самое интересное из них то, что экспоненциальная функция, е>x равна своему угловому коэффициенту. Возьмем следующий график.
Угловой коэффициент функции — это точка, которая определяется как отношение между возрастанием функции по высоте и возрастанием по горизонтали. На этом графике мы можем вычислить угловой коэффициент в каждой точке. Итак, если мы представим угловой коэффициент функции х, то получим тот же график.
Число Эйлера связано и с другим известным числом, π. Существует уравнение, связывающее е с π и мнимой единицей i, которая определяется как квадратный корень из -1:
e>iπ - 1 = 0
Многие математики считают это уравнение одним из самых элегантных в истории науки, поскольку в нем самые важные числа собраны в простом тождестве.
* * *
До сих пор мы считали, что частицы газа подобны бильярдным шарам. Даже если они очень похожи, мы можем каким-то образом различить их. Например, мы можем снять их на видео и следить за их изменением или пометить их фломастером. Однако это предположение, которое, кажется, соответствует здравому смыслу, не работает для очень маленьких частиц, таких как атомы или молекулы. Не существует способа отличить два атома водорода, дело выглядит так, будто это одна и та же частица, которая одновременно находится в двух разных местах. Это справедливо для любой элементарной частицы — электрона, протона или фотона.