Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики | страница 42
Как мы увидим, существуют различные варианты распределения вероятностей, и каждый из них имеет место в каждом отдельном случае. В данном случае нас интересует, что происходит с дискретной переменной — это означает, что мы имеем дело с отдельными результатами, такими как орел или решка. Существует другой тип переменных, называемых непрерывными, под которыми подразумевается любая величина в некотором диапазоне: например от 0 до 10, включая любое число с произвольным количеством знаков после запятой.
Для наших рассуждений важно знать факториальную функцию. Факториал 3 обозначается 3! и вычисляется следующим образом:
3! = 3·2·1.
5! = 5·4·3·2·1.
Факториал п вычисляется следующим образом:
n! = n·(n — 1)·(n — 2)·…·2·1.
Теперь мы можем начать выводить формулу, которая даст нам вероятность получения некоторой последовательности орлов и решек при любом количестве бросков.
Для начала посмотрим, сколько возможных комбинаций выпадения орла и решки существует для n бросков. Для первого броска возможны два варианта: орел или решка. Для второго — еще два, что в сумме дает четыре. Для следующего броска у нас есть по две возможности для каждого предыдущего, что в сумме дает восемь. Итак, общее число возможностей для n бросков равно 2>n, то есть два, умноженное само на себя n раз.
Далее нам нужно вычислить количество комбинаций, при которых можно получить k орлов при n бросков. Подставляя различные числа, можно выяснить, что количество комбинаций задано биномиальным коэффициентом, который определяется по следующей формуле с использованием факториальной функции:
Вероятность выпадения k сторон, следовательно, равна
Биномиальное распределение позволяет сделать прогнозы, которые, как кажется, противоречат здравому смыслу. Например, какова вероятность выпадения 50 орлов за 100 бросков? Применим нашу формулу, помня, что вероятность — это отношение к единице, а не к 100:
Этот результат может показаться удивительным, мы ведь ожидали 50 орлов на 100 бросков. Почему же вероятность получилась такой низкой? Ответ в том, что мы интересуемся вероятностью выпадения именно 50 орлов. Теперь найдем вероятность выпадения сорока девяти: