Том 18. Открытие без границ. Бесконечность в математике | страница 34
* * *
Еще одним важным открытием Евдокса стала так называемая аксиома о непрерывности, также известная как лемма Архимеда (сам Архимед писал, что автором этой леммы является Евдокс), которая гласит: «Для данных двух величин, между которыми существует соотношение, можно найти одну из них, превосходящую другую». Важность этой леммы заключается в том, что она позволяет доказать путем доведения до абсурда одно из самых важных утверждений в истории математики, благодаря которому Евдокс и многие другие ученые смогли вычислить площади и объемы криволинейных фигур. Утверждение Евдокса звучит так: «Для двух заданных неравных величин, если от большей отнимается больше половины и от остатка больше половины, и это делается постоянно, то останется некоторая величина, которая будет меньше заданной меньшей величины».
На этом утверждении также основано первое четкое и непротиворечивое определение предела, данное в XIX веке Карлом Вейерштрассом (1815–1897), которое стало важной вехой в истории математики.
Метод Евдокса для вычисления площадей и объемов, основанный на этом утверждении, известен как метод исчерпывания. Неудивительно, что многие историки считают основание школы Платона моментом рождения греческой математики, так как Евдокс заложил основы нового раздела математики, который много веков спустя стал называться анализом бесконечно малых.
Метод исчерпывания позволял получить верные доказательства, если его предпосылки были верны (так было в большинстве случаев), но обладал определенным недостатком: с его помощью нельзя было получить новые результаты. Напомним, что в этом методе результат считался истинным и рассматривались возможные способы, которыми можно было прийти к этому результату. Например, было известно, что формулы объема конуса и пирамиды, доказанные Евдоксом, были получены математиками прошлого, в частности Демокритом, без каких-либо выводов или доказательств.
В настоящее время нам известен метод интегрирования, позволяющий произвести необходимые вычисления по четко определенному алгоритму. Это означает, что необходимые расчеты может произвести машина. В основе этого метода лежит сформулированная древнегреческими математиками идея, тесно связанная с аппроксимацией площади фигуры с помощью прямоугольников, о чем мы говорили выше (в некотором роде метод исчерпывания схож с современным методом суммирования по Риману).
Этот метод заключается в построении ряда прямоугольников, высота которых не превосходит высоту кривой, иными словами, прямоугольников, нижнее основание которых располагается на оси, а верхнее — под искомой кривой.