Том 15. От абака к цифровой революции. Алгоритмы и вычисления | страница 12
* * *
ПАПИРУС АХМЕСА
В этом знаменитом египетском папирусе длиной 6 метров приводится 87 разнообразных задач с решениями. Он был написан в период с 2000 по 1800 год до н. э. Его автор Ахмес указывает, что он воспроизводит знания, насчитывающие более двух сотен лет, необходимые для будущих писцов. Таким образом, папирус Ахмса можно считать примитивным учебником по математике. В настоящее время папирус хранится в Британском музее, куда он поступил из коллекции Генри Райнда в 1858 году. (По имени владельца его еще называют папирусом Райнда.) В нем также объясняются действия с дробями.
* * *
Папирус Ахмеса содержит информацию о выполнении действий с дробями, а также позволяет получить представление о типичных задачах, которые решали египтяне, и о способах их решения. Первые задачи папируса Ахмеса — это задачи о делении чисел на 10. При их решении использовалась уже упомянутая таблица чисел вида п/10. Далее приводятся некоторые задачи из арифметики и геометрии, а также задачи, которые можно решить с помощью линейных уравнений вида ах + Ьх = с. Некоторые из задач папируса Ахмеса содержат неизвестные, возведенные в квадрат (в современной нотации), однако, несмотря на это, считается, что египтяне не умели решать уравнения второй и третьей степени.
Большинство задач решаются методом, который сейчас известен как метод ложного положения. Лишь задача 30 решается современным способом — с помощью факторизации и деления. Чтобы объяснить метод ложного положения, рассмотрим в качестве примера задачу 24, которая в наши дни решается с помощью линейного уравнения. Задача звучит так:
«Определите цену кучи, если куча и седьмая часть кучи стоит 19».
В современной нотации условие задачи записывается так: х + 1/7х = 19.
Метод ложного положения заключается в следующем. Мы предполагаем, что неизвестная равна определенному числу, и вычисляем результат для этого значения неизвестной. Так как выбранное нами значение неверно, результат также будет ошибочным, поэтому мы скорректируем значение переменной так, чтобы получить верный результат. Допустим, что цена кучи в нашей задаче равна 7, то есть х = 7. Цена кучи и ее седьмой части будет равна 8. Иными словами, при х = 7х + 1/7x = 8. Далее нужно определить, как следует изменить выбранное нами значение 7, чтобы результат выражения был равен 19, а не 8. Нужно умножить 8 или