Мозг и тело. Как ощущения влияют на наши чувства и эмоции | страница 43




У Салли в автомобиле есть CD-проигрыватель на шесть дисков. Всего у нее 100 дисков. Сколько возможных комбинаций загрузки плеера она может составить?

Ответ: при загрузке первого диска она может выбирать из 100 CD; для второго – из 99, для третьего – из 98; для четвертого – из 97; для пятого – из 96; для шестого – из 95. Итак: 100 × 99 × 98 × 97 × 96 × 95 = 858 277 728 000 (если Салли не передумает и продолжит заряжать по шесть дисков за раз).

Ученики, имевшие возможность физически «прочувствовать», что означает понятие «дискретное множество», оказываются лучше подготовленными к встрече с этими задачами. Им проще связать их с собственным опытом и примерить на себя различные возможные комбинации, чтобы определить, насколько правильно выведенное ими алгебраическое уравнение. Подобно третьеклассникам из эксперимента Гленберга, которые отсчитывали определенное количество рыбок для каждого животного из задачи про зоопарк, ученики средних классов, поняв, что такое «дискретный» и что количество возможных комбинаций ограничено, сумеют привязать значение абстрактных понятий из алгебры к чему-то конкретному.

В другом упражнении из «Математического танца» ученики встают попарно и десять раз подбрасывают вверх монетку. От того, что выпадет – орел или решка, зависит, кто из пары будет выполнять движение. Но прежде чем начать подбрасывать монетку, они составляют прогноз, кому сколько раз придется двигаться. До начала упражнения большинство учеников предполагают, что каждый из них будет делать свое движение примерно столько же раз, сколько и напарник. Но вскоре они понимают, что в реальности все обстоит несколько иначе. Что пятидесятипроцентная вероятность выпадения орла или решки не означает, что все получится именно так, по крайней мере, до тех пор, пока ты не сделаешь несколько тысяч итераций, то есть повторов. Дети убеждаются: чем больше раз они будут подбрасывать монетку, тем ближе к 50 процентам будут подбираться, а это ключевой момент для понимания теории вероятности.

И наверное, самое удивительное в «Математическом танце» то, что само по себе движение имеет большое значение. Танцевать и одновременно подбрасывать монетку – важное условие урока на тему закона вероятности, который преподносят Шеффер и Стерн, потому что в процессе движения мы, как правило, запоминаем идеи и концепции лучше, чем когда стоим на месте.

Люди, занимающиеся танцем, давно заметили, что тело – надежный помощник памяти. Когда артисты балета разучивают новый хореографический этюд, они физически проигрывают движения в заданной последовательности, чтобы лучше запомнить шаги. И когда их просят воспроизвести разученное, они, как правило, склонны восстанавливать в памяти танцевальные движения порциями, на основе определенной последовательности положений, которые занимает тело. Они используют свое тело как запоминающее устройство, помогающее им организовывать свои шаги, а впоследствии и воспроизводить их. Точно так же и движения, связанные с математическими понятиями, помогают ученикам «проиграть» ту или иную задачу, «прочувствовать», как отдельные понятия связаны между собой, в результате чего им бывает легче загрузить их в свою память.