Эйнштейн. Теория относительности. Пространство – это вопрос времени | страница 36
и применив формулу преобразований Лоренца, мы получаем поразительный результат:
Поскольку скорость корабля меньше скорости света (u < с), то фактор бета меньше t, а значение L меньше, чем L'. То есть для наблюдателей в системе G трюм корабля в длину меньше, чем для наблюдателей в системе D. Это и есть так называемое Лоренцево сжатие.
РИС. 15
РИС. 16
РИС. 17
Ниже мы показываем, как преобразования Лоренца применяются в расчете сжатия. У нас есть два математических выражения того расстояния, которое проходит свет:
L + u•(t>2 -t>1),
с•(t>2- t>1)=x2 -х1.
Приравняем их:
L + u•(t>2 -t>1 ) = c•(t>2 -t>1 )=x2- x1 L=x2 -x1 -u-(t>2 -t>1 ).
Уравнение можно упростить, если немного изменить обозначения:
Тогда выражение, найденное для L, сокращается до:
Поскольку теперь мы допускаем, что часы могут идти по-разному в зависимости от системы, для перевода координат системы G в систему D нам будет нужно использовать преобразования Лоренца:
Если мы введем эти выражения в формулу L, то получим:
А если учесть, что
Представим себе другую ситуацию. В ней наблюдатели из разных инерциальных систем присутствуют при одних и тех же явлениях, их задача – фиксировать интервал времени. В своей статье «К электродинамике движущихся тел» Эйнштейн прибегает к более простому примеру. Имея две системы, G и D последняя из которых двигалась относительно G с равномерной скоростью и, он разместил часы ровно в центре системы отсчета D и спросил себя: «Как быстро идут эти часы для наблюдателя из неподвижной системы отсчета?»
После применения формулы преобразования Лоренца был получен следующий ответ:
Из этого Эйнштейн сделал вывод: «…откуда следует, что показание часов (наблюдаемое из покоящейся системы) отстает в секунду на 1 – β секунды». Потому для наблюдателя, находящегося в покоящейся системе отсчета, время движущейся системы течет медленнее, чем его собственной.
Благодаря преобразованиям Лоренца уравнения Максвелла сохраняются в любой инерциальной системе, но что приключается со старыми формулами ньютоновской динамики? После изменения координат с ними случается то же, что раньше происходило с уравнениями Максвелла в преобразовании Галилея: появляются не имеющие физического смысла элементы. Что же получается, из огня да в полымя? Но нет, на самом деле уравнения Ньютона тоже нуждаются в легкой корректировке. Если уж мы решили принять постулаты теории относительности, то нужно применять их ко всем законам физики, и динамика не исключение.